Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Trust but Verify: The Curious Case of AI Hallucinations

    Trust but Verify: The Curious Case of AI Hallucinations

    July 2, 2025

    AI is no longer the future; it is happening. Every other technology faces issues during its development phase, and AI is no exception. Have you ever asked an AI a question and received an answer that sounded perfectly confident, only to find out it was completely wrong? That is not a glitch; it is called hallucination in the world of AI.

    What Are AI Hallucinations?

    An AI hallucination occurs when a model produces content that seems accurate but is incorrect, fabricated, illogical, or nonsensical. The result might appear correct, but it’s simply not true, deviating from the fact.

    File 0000000009d461f7b254ed9fff3e8380

    Why do AI Hallucinations Occur?

    To understand AI hallucinations, we need to take a look under the hood at how these models are designed, trained, and deployed for customer use.

    • Language prediction, not reasoning: Certain generative AIs are just trained to predict the next word in a sentence based on patterns in massive text datasets.
    • No awareness: These models lack understanding, but they can only mimic.
    • Gaps in training data: If a model has not been exposed to sufficient reliable information, if the training data is biased, or if it has been trained with very limited data, the result may deviate from the actual truth.
    • Overconfidence: AI models are optimized for fluency and clarity, which can lead them to present wrong answers in an authoritative tone.

    Understand with a Real-World Example

    Let us consider the following example. Here, the user asks AI a question and receives a result, then rephrases the question to maintain the same meaning, but this time, AI generates a different answer in contradiction to the previous one. This inconsistency and lack of clarity lead to AI hallucination.

    The user asks, “Is Pluto a planet?”

    AI says, “Yes, Pluto is the 9th planet.”

    The user rephrases the question and asks again, and AI says, “No, Pluto is not a planet since it does not clear its orbital path of other debris.”

    Hal3

    AI can hallucinate in terms of fake citations on websites, books, legal or research documents, historical inaccuracies, visual errors in image generation, and contradictory responses, among other issues. In critical fields like banking, healthcare, law, or education, such hallucinations can be lethal.

    How to Spot an AI Hallucination

    • Check with external authentic sources: If something seems right but still triggers ambiguity, perform a fact-check with authenticated sources, either online or offline.
    • Look for vague claims, redundant content, or generic language. If the results are delivered with extreme confidence with oddly precise numbers, it could be a red flag.
    • Visit references: If an article or quote is cited, visit the referenced site personally to see if it exists.

    How to Mitigate AI Hallucinations

    Mitigating AI hallucination involves technical strategies, human oversight, and enhanced system design.

    Hal4

    Technical Strategies to Reduce AI Hallucinations

    1. Grounding in Reliable Sources

    • Involving RAG: It is known as the retrieval-augmented generation approach, used in LLM and NLP. Using this, the machine’s output can be optimized to utilize a retrieval system that refers to an authoritative knowledge data source before producing the result.
    • Using APIs: Build external APIs that can query verified external resources or any domain-specific resource in real-time and generate results.
    • Guardrails: Building safeguards and including refusal mechanisms when the model is unsure about the context. It can validate the output of the machine and make corrections.

    2. Fine-Tuning with Quality Data

    • We need to train and then fine-tune the model with an extensive amount of data. Fine-tuning the LLM model can enhance the machine’s performance.

    3. Prompt Engineering

    • Use properly crafted prompts to enable the model to interpret and understand them, generating factual results.

    Human Oversight Can Decrease AI Hallucinations

    1.    Fact-Checking

    • Keep humans in the loop for manually verifying the results generated by an AI model. This can help reduce any false information, which is highly critical in domains such as medical, legal, and financial.

    2. User Feedback Loops

    • Designing the model to get feedback from the users in terms of emojis, suggestions, comparison between two responses, etc.
    • Use reinforcement learning with human feedback (RLHF) to improve truthfulness.

    System Design Best Practices to Mitigate AI Hallucinations

    1.     Audit Trails

    • Transparency is key; all significant steps taken to design the model, including all sources and references, should be documented. This ensures compliance and accountability.

    2. Confidence Indicators

    • Show confidence scores or highlight potentially uncertain outputs to users. A confidence indicator is generally a score that indicates how specific the AI is of the result it has produced, based on which the user can decide whether to rely on or deny it.

    3.     Regular Evaluation

    • Continuously evaluate the model using hallucination tests on various datasets.

    4.     Use Domain-Specific Models

    • Smaller, domain-specific models trained on exclusive data that is authorized can perform well in terms of accuracy.

    Conclusion

    Fluency cannot be equated with accuracy. As powerful as these tools are, we still require human intervention to maintain their credibility and reliability. The next time you encounter an AI hallucination, be sure to fact-check and appreciate the intriguing complexity of machine-generated imagination.

    References

    Why IT needs a framework for responsible agentic AI – The Economic Times

    Reducing hallucinations in large language models with custom intervention using Amazon Bedrock Agents | Artificial Intelligence and Machine Learning

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleFrom Flow to Fabric: Connecting Power Automate to Microsoft Fabric
    Next Article Best early Prime Day security camera deals: My 12 favorite sales live now

    Related Posts

    Development

    Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

    September 28, 2025
    Development

    Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

    September 28, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CodeSOD: An Annual Report

    News & Updates

    CVE-2025-49113: Roundcube RCE Exploit Unveiled—The Swiss Army Knife of Webmail Just Got a Weaponized Blade

    Security

    Why Data Validation Testing Is Essential for ETL Success

    Development

    I Went to the Coldplay Concert and All I Got Was Divorced Shirt

    Web Development

    Highlights

    Databases

    How Amazon maintains accurate totals at scale with Amazon DynamoDB

    May 19, 2025

    Amazon’s Finance Technologies Tax team (FinTech Tax) manages mission-critical services for tax computation, deduction, remittance,…

    How to Build AI Speech-to-Text and Text-to-Speech Accessibility Tools with Python

    September 2, 2025

    Google Ends Remote Work for Many: Return to Office or Leave

    April 25, 2025

    Innovate business logic by implementing return of control in Amazon Bedrock Agents

    June 17, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.