Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB

    Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB

    August 11, 2025

    In this tutorial, we dive deep into the advanced capabilities of OpenBB to perform comprehensive portfolio analysis and market intelligence. We start by constructing a tech-focused portfolio, fetching historical market data, and computing key performance metrics. We then explore advanced technical indicators, sector-level performance, market sentiment, and correlation-based risk analysis. Along the way, we integrate visualizations and insights to make the analysis more intuitive and actionable, ensuring that we cover both the quantitative and qualitative aspects of investment decision-making. Check out the Full Codes here.

    Copy CodeCopiedUse a different Browser
    !pip install openbb[all] --quiet
    
    
    import warnings
    warnings.filterwarnings('ignore')
    
    
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from datetime import datetime, timedelta
    import openbb
    
    
    from openbb import obb
    
    
    pd.set_option('display.max_columns', None)
    pd.set_option('display.width', 1000)
    
    
    print("<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f680.png" alt="🚀" class="wp-smiley" /> Advanced OpenBB Financial Analysis Tutorial")
    print("=" * 60)

    We begin by installing and importing OpenBB along with essential Python libraries for data analysis and visualization. We configure our environment to suppress warnings, set display options for pandas, and get ready to perform advanced financial analysis. Check out the Full Codes here.

    Copy CodeCopiedUse a different Browser
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4ca.png" alt="📊" class="wp-smiley" /> 1. BUILDING AND ANALYZING A TECH PORTFOLIO")
    print("-" * 50)
    
    
    tech_stocks = ['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'NVDA']
    initial_weights = [0.25, 0.20, 0.25, 0.15, 0.15]
    
    
    end_date = datetime.now().strftime('%Y-%m-%d')
    start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')
    
    
    portfolio_data = {}
    portfolio_returns = pd.DataFrame()
    successful_stocks = []
    
    
    print(f"Fetching data from {start_date} to {end_date}...")
    
    
    for i, symbol in enumerate(tech_stocks):
       try:
           data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)
           df = data.to_df()
          
           if df.index.duplicated().any():
               df = df[~df.index.duplicated(keep='first')]
          
           portfolio_data[symbol] = df
          
           returns = df['close'].pct_change().dropna()
           portfolio_returns[symbol] = returns
           successful_stocks.append(symbol)
          
           print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/2705.png" alt="✅" class="wp-smiley" /> {symbol}: {len(df)} days of data")
       except Exception as e:
           print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/274c.png" alt="❌" class="wp-smiley" /> Error fetching {symbol}: {str(e)}")
    
    
    if successful_stocks:
       successful_indices = [tech_stocks.index(stock) for stock in successful_stocks]
       portfolio_weights = [initial_weights[i] for i in successful_indices]
       total_weight = sum(portfolio_weights)
       portfolio_weights = [w/total_weight for w in portfolio_weights]
      
       print(f"n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4cb.png" alt="📋" class="wp-smiley" /> Portfolio composition (normalized weights):")
       for stock, weight in zip(successful_stocks, portfolio_weights):
           print(f"  {stock}: {weight:.1%}")
    else:
       portfolio_weights = []
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4c8.png" alt="📈" class="wp-smiley" /> 2. PORTFOLIO PERFORMANCE ANALYSIS")
    print("-" * 50)
    
    
    if not portfolio_returns.empty and portfolio_weights:
       weighted_returns = (portfolio_returns * portfolio_weights).sum(axis=1)
      
       annual_return = weighted_returns.mean() * 252
       annual_volatility = weighted_returns.std() * np.sqrt(252)
       sharpe_ratio = annual_return / annual_volatility if annual_volatility > 0 else 0
       max_drawdown = (weighted_returns.cumsum().expanding().max() - weighted_returns.cumsum()).max()
      
       print(f"Portfolio Annual Return: {annual_return:.2%}")
       print(f"Portfolio Volatility: {annual_volatility:.2%}")
       print(f"Sharpe Ratio: {sharpe_ratio:.3f}")
       print(f"Max Drawdown: {max_drawdown:.2%}")
      
       print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4ca.png" alt="📊" class="wp-smiley" /> Individual Stock Performance:")
       for stock in successful_stocks:
           stock_return = portfolio_returns[stock].mean() * 252
           stock_vol = portfolio_returns[stock].std() * np.sqrt(252)
           print(f"{stock}: Return {stock_return:.2%}, Volatility {stock_vol:.2%}")
    else:
       print("<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/274c.png" alt="❌" class="wp-smiley" /> No valid portfolio data available for analysis")

    We build a tech portfolio, fetch a year of prices with OpenBB, compute normalized weights and daily returns, then evaluate performance, annual return, volatility, Sharpe, max drawdown, and review stock-wise stats in real time. Check out the Full Codes here.

    Copy CodeCopiedUse a different Browser
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f50d.png" alt="🔍" class="wp-smiley" /> 3. ADVANCED TECHNICAL ANALYSIS")
    print("-" * 50)
    
    
    symbol = 'NVDA'
    try:
       price_data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)
       df = price_data.to_df()
      
       df['SMA_20'] = df['close'].rolling(window=20).mean()
       df['SMA_50'] = df['close'].rolling(window=50).mean()
       df['EMA_12'] = df['close'].ewm(span=12).mean()
       df['EMA_26'] = df['close'].ewm(span=26).mean()
      
       df['MACD'] = df['EMA_12'] - df['EMA_26']
       df['MACD_signal'] = df['MACD'].ewm(span=9).mean()
      
       delta = df['close'].diff()
       gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
       loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
       rs = gain / loss
       df['RSI'] = 100 - (100 / (1 + rs))
      
       df['BB_middle'] = df['close'].rolling(window=20).mean()
       bb_std = df['close'].rolling(window=20).std()
       df['BB_upper'] = df['BB_middle'] + (bb_std * 2)
       df['BB_lower'] = df['BB_middle'] - (bb_std * 2)
      
       current_price = df['close'].iloc[-1]
       current_rsi = df['RSI'].iloc[-1]
       macd_signal = "BUY" if df['MACD'].iloc[-1] > df['MACD_signal'].iloc[-1] else "SELL"
       price_vs_sma20 = "Above" if current_price > df['SMA_20'].iloc[-1] else "Below"
      
       print(f"n{symbol} Technical Analysis:")
       print(f"Current Price: ${current_price:.2f}")
       print(f"RSI (14): {current_rsi:.2f} ({'Overbought' if current_rsi > 70 else 'Oversold' if current_rsi < 30 else 'Neutral'})")
       print(f"MACD Signal: {macd_signal}")
       print(f"Price vs SMA(20): {price_vs_sma20}")
      
    except Exception as e:
       print(f"Error in technical analysis: {str(e)}")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f3ed.png" alt="🏭" class="wp-smiley" /> 4. SECTOR ANALYSIS & STOCK SCREENING")
    print("-" * 50)
    
    
    sectors = {
       'Technology': ['AAPL', 'GOOGL', 'MSFT'],
       'Electric Vehicles': ['TSLA', 'RIVN', 'LCID'],
       'Semiconductors': ['NVDA', 'AMD', 'INTC']
    }
    
    
    sector_performance = {}
    
    
    for sector_name, stocks in sectors.items():
       sector_returns = []
       for stock in stocks:
           try:
               data = obb.equity.price.historical(symbol=stock, start_date=start_date, end_date=end_date)
               df = data.to_df()
               if df.index.duplicated().any():
                   df = df[~df.index.duplicated(keep='first')]
               returns = df['close'].pct_change().dropna()
               sector_returns.append(returns.mean() * 252)
           except Exception as e:
               print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/274c.png" alt="❌" class="wp-smiley" /> Failed to fetch {stock}: {str(e)}")
               continue
      
       if sector_returns:
           avg_return = np.mean(sector_returns)
           sector_performance[sector_name] = avg_return
           print(f"{sector_name}: {avg_return:.2%} average annual return")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4f0.png" alt="📰" class="wp-smiley" /> 5. MARKET SENTIMENT ANALYSIS")
    print("-" * 50)
    
    
    for symbol in successful_stocks[:2]: 
       try:
           news = obb.news.company(symbol=symbol, limit=3)
           news_df = news.to_df()
           print(f"n{symbol} Recent News Headlines:")
           for idx, row in news_df.iterrows():
               print(f"• {row.get('title', 'N/A')[:80]}...")
               break 
       except Exception as e:
           print(f"News not available for {symbol}: {str(e)}")

    We run advanced technical analysis on NVDA, calculating SMAs, EMAs, MACD, RSI, and Bollinger Bands, to gauge momentum and potential entry/exit signals. We then screen sectors by annualized returns across Technology, EVs, and Semiconductors, and we pull fresh company headlines to fold market sentiment into our thesis. Check out the Full Codes here.

    Copy CodeCopiedUse a different Browser
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/26a0.png" alt="⚠" class="wp-smiley" />  6. RISK ANALYSIS")
    print("-" * 50)
    
    
    if not portfolio_returns.empty and len(portfolio_returns.columns) > 1:
       correlation_matrix = portfolio_returns.corr()
       print("nPortfolio Correlation Matrix:")
       print(correlation_matrix.round(3))
      
       portfolio_var = np.dot(portfolio_weights, np.dot(correlation_matrix *
                             (portfolio_returns.std().values.reshape(-1,1) *
                              portfolio_returns.std().values.reshape(1,-1)),
                             portfolio_weights))
       portfolio_risk = np.sqrt(portfolio_var) * np.sqrt(252)
       print(f"nPortfolio Risk (Volatility): {portfolio_risk:.2%}")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4ca.png" alt="📊" class="wp-smiley" /> 7. CREATING PERFORMANCE VISUALIZATIONS")
    print("-" * 50)
    
    
    if not portfolio_returns.empty:
       fig, axes = plt.subplots(2, 2, figsize=(15, 10))
       fig.suptitle('Portfolio Analysis Dashboard', fontsize=16)
      
       cumulative_returns = (1 + portfolio_returns).cumprod()
       cumulative_returns.plot(ax=axes[0,0], title='Cumulative Returns', alpha=0.7)
       axes[0,0].legend(bbox_to_anchor=(1.05, 1), loc='upper left')
      
       rolling_vol = portfolio_returns.rolling(window=30).std() * np.sqrt(252)
       rolling_vol.plot(ax=axes[0,1], title='30-Day Rolling Volatility', alpha=0.7)
       axes[0,1].legend(bbox_to_anchor=(1.05, 1), loc='upper left')
      
       weighted_returns.hist(bins=50, ax=axes[1,0], alpha=0.7)
       axes[1,0].set_title('Portfolio Returns Distribution')
       axes[1,0].axvline(weighted_returns.mean(), color='red', linestyle='--', label='Mean')
       axes[1,0].legend()
      
       if len(correlation_matrix) > 1:
           sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[1,1])
           axes[1,1].set_title('Correlation Matrix')
      
       plt.tight_layout()
       plt.show()
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f3af.png" alt="🎯" class="wp-smiley" /> 8. INVESTMENT SUMMARY & RECOMMENDATIONS")
    print("-" * 50)
    
    
    print("Portfolio Analysis Complete!")
    print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/2705.png" alt="✅" class="wp-smiley" /> Analyzed {len(successful_stocks)} stocks")
    print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/2705.png" alt="✅" class="wp-smiley" /> Calculated {len(sector_performance)} sector performances")
    print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/2705.png" alt="✅" class="wp-smiley" /> Generated technical indicators and risk metrics")
    
    
    if not portfolio_returns.empty and len(successful_stocks) > 0:
       best_performer = portfolio_returns.mean().idxmax()
       worst_performer = portfolio_returns.mean().idxmin()
       print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f3c6.png" alt="🏆" class="wp-smiley" /> Best Performer: {best_performer}")
       print(f"<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4c9.png" alt="📉" class="wp-smiley" /> Worst Performer: {worst_performer}")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f4a1.png" alt="💡" class="wp-smiley" /> Key Insights:")
    print("• Diversification across tech sectors reduces portfolio risk")
    print("• Technical indicators help identify entry/exit points")
    print("• Regular rebalancing maintains target allocations")
    print("• Monitor correlations to avoid concentration risk")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f527.png" alt="🔧" class="wp-smiley" /> Next Steps:")
    print("• Backtest different allocation strategies")
    print("• Add fundamental analysis metrics")
    print("• Implement automated alerts for technical signals")
    print("• Explore ESG and factor-based screening")
    
    
    print("n" + "="*60)
    print("OpenBB Advanced Tutorial Complete! <img src="https://s.w.org/images/core/emoji/16.0.1/72x72/1f389.png" alt="🎉" class="wp-smiley" />")
    print("Visit https://openbb.co for more features and documentation")

    We quantify portfolio risk via correlations and annualized volatility, visualize performance with cumulative returns, rolling volatility, return distribution, and a correlation heatmap, then conclude with best/worst performers, key insights (diversification, signals, rebalancing), and concrete next steps like backtesting, adding fundamentals, alerts, and ESG screening.

    In conclusion, we have successfully leveraged OpenBB to build, analyze, and visualize a diversified portfolio while extracting sector insights, technical signals, and risk metrics. We see how combining performance statistics with market sentiment and advanced visualizations empowers us to make informed investment decisions. This approach allows us to continuously monitor and refine our strategies, ensuring that we remain agile in changing market conditions and confident in the data-driven choices we make.


    Check out the Full Codes here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    🇾 Discuss on Hacker News
    🇷 Join our ML Subreddit
    🇸 Sponsor us

    The post Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Complete Guide to DeepSeek-R1-0528 Inference Providers: Where to Run the Leading Open-Source Reasoning Model
    Next Article The Last Run of Chandru

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    North Korea Uses GitHub in Diplomat Cyber Attacks as IT Worker Scheme Hits 320+ Firms

    Development
    Minneapolis, Let’s Talk AI at Agentforce World Tour

    Minneapolis, Let’s Talk AI at Agentforce World Tour

    Development

    Microsoft Urges TPM 2.0 for Windows 11 Upgrade as Win 10 Support Nears End

    Security

    Superhuman’s Secret Onboarding UX

    Web Development

    Highlights

    News & Updates

    Hades Mining emerges from stealth with €5.5M Pre-Seed funding

    August 20, 2025

    Munich-based deeptech mining company Hades Mining has emerged from stealth and announced today that it…

    SpyNote, BadBazaar, MOONSHINE Malware Target Android and iOS Users via Fake Apps

    SpyNote, BadBazaar, MOONSHINE Malware Target Android and iOS Users via Fake Apps

    April 11, 2025

    Last Week in AI #315 – Grok 4, Windsurf->Google, Comet

    July 12, 2025

    Our vision for building a universal AI assistant

    May 20, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.