Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: An Echo In Here in here

      September 19, 2025

      How To Minimize The Environmental Impact Of Your Website

      September 19, 2025

      Progress adds AI coding assistance to Telerik and Kendo UI libraries

      September 19, 2025

      Wasm 3.0 standard is now officially complete

      September 19, 2025

      Distribution Release: Security Onion 2.4.180

      September 18, 2025

      Distribution Release: Omarchy 3.0.1

      September 17, 2025

      Distribution Release: Mauna Linux 25

      September 16, 2025

      Distribution Release: SparkyLinux 2025.09

      September 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025
      Recent

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025

      Shopping Portal using Python Django & MySQL

      September 17, 2025

      Perficient Earns Adobe’s Real-time CDP Specialization

      September 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Denmark’s Strategic Leap Replacing Microsoft Office 365 with LibreOffice for Digital Independence

      September 19, 2025
      Recent

      Denmark’s Strategic Leap Replacing Microsoft Office 365 with LibreOffice for Digital Independence

      September 19, 2025

      Valve Survey Reveals Slight Retreat in Steam-on-Linux Share

      September 18, 2025

      Review: Elecrow’s All-in-one Starter Kit for Pico 2

      September 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents

    Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents

    August 1, 2025

    Deep Research (DR) agents have rapidly gained popularity in both research and industry, thanks to recent progress in LLMs. However, most popular public DR agents are not designed with human thinking and writing processes in mind. They often lack structured steps that support human researchers, such as drafting, searching, and using feedback. Current DR agents compile test-time algorithms and various tools without cohesive frameworks, highlighting the critical need for purpose-built frameworks that can match or excel human research capabilities. The absence of human-inspired cognitive processes in current methods creates a gap between how humans do research and how AI agents handle complex research tasks.

    Existing works, such as test-time scaling, utilize iterative refinement algorithms, debate mechanisms, tournaments for hypothesis ranking, and self-critique systems to generate research proposals. Multi-agent systems utilize planners, coordinators, researchers, and reporters to produce detailed responses, while some frameworks enable human co-pilot modes for feedback integration. Agent tuning approaches focus on training through multitask learning objectives, component-wise supervised fine-tuning, and reinforcement learning to improve search and browsing capabilities. LLM diffusion models attempt to break autoregressive sampling assumptions by generating complete noisy drafts and iteratively denoising tokens for high-quality outputs.

    Researchers at Google introduced Test-Time Diffusion Deep Researcher (TTD-DR), inspired by the iterative nature of human research through repeated cycles of searching, thinking, and refining. It conceptualizes research report generation as a diffusion process, starting with a draft that serves as an updated outline and evolving foundation to guide research direction. The draft undergoes iterative refinement through a “denoising” process, dynamically informed by a retrieval mechanism that incorporates external information at each step. This draft-centric design makes report writing more timely and coherent while reducing information loss during iterative search processes. TTD-DR achieves state-of-the-art results on benchmarks that require intensive search and multi-hop reasoning.

    The TTD-DR framework addresses limitations of existing DR agents that employ linear or parallelized processes. The proposed backbone DR agent contains three major stages: Research Plan Generation, Iterative Search and Synthesis, and Final Report Generation, each containing unit LLM agents, workflows, and agent states. The agent utilizes self-evolving algorithms to enhance the performance of each stage, helping it to find and preserve high-quality context. The proposed algorithm, inspired by recent self-evolution work, is implemented in a parallel workflow along with sequential and loop workflows. This algorithm can be applied to all three stages of agents to improve overall output quality.

    In side-by-side comparisons with OpenAI Deep Research, TTD-DR achieves 69.1% and 74.5% win rates for long-form research report generation tasks, while outperforming by 4.8%, 7.7%, and 1.7% on three research datasets with short-form ground-truth answers. It shows strong performance in Helpfulness and Comprehensiveness auto-rater scores, especially on LongForm Research datasets. Moreover, the self-evolution algorithm achieves 60.9% and 59.8% win rates against OpenAI Deep Research on LongForm Research and DeepConsult. The correctness score shows an enhancement of 1.5% and 2.8% on HLE datasets, though the performance on GAIA remains 4.4% below OpenAI DR. The incorporation of Diffusion with Retrieval leads to substantial gains over OpenAI Deep Research across all benchmarks.

    In conclusion, Google presents TTD-DR, a method that addresses fundamental limitations through human-inspired cognitive design. The framework’s approach conceptualizes research report generation as a diffusion process, utilizing an updatable draft skeleton that guides research direction. TTD-DR, enhanced by self-evolutionary algorithms applied to each workflow component, ensures high-quality context generation throughout the research process. Moreover, evaluations demonstrate that TTD-DR’s state-of-the-art performance across various benchmarks that require intensive search and multi-hop reasoning, with superior results in both comprehensive long-form research reports and concise multi-hop reasoning tasks.


    Check out the Paper here. Feel free to check our Tutorials page on AI Agent and Agentic AI for various applications. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post Google AI Introduces the Test-Time Diffusion Deep Researcher (TTD-DR): A Human-Inspired Diffusion Framework for Advanced Deep Research Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMeet SmallThinker: A Family of Efficient Large Language Models LLMs Natively Trained for Local Deployment
    Next Article TransEvalnia: A Prompting-Based System for Fine-Grained, Human-Aligned Translation Evaluation Using LLMs

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-6157 – PHPGurukul Nipah Virus SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Meeting summarization and action item extraction with Amazon Nova

    Machine Learning
    The latest trailer for this highly anticipated indie heading to Xbox Game Pass teaches us how to be a good shopkeeper (while dropping a hot new release window)

    The latest trailer for this highly anticipated indie heading to Xbox Game Pass teaches us how to be a good shopkeeper (while dropping a hot new release window)

    News & Updates

    How SkillShow automates youth sports video processing using Amazon Transcribe

    Machine Learning

    Highlights

    News & Updates

    I’ve fallen in love with this stunning 5K monitor and its built-in KVM switch — it’s ideal for my creative projects

    April 24, 2025

    I tested this 27-inch ProArt 5K monitor for three weeks, and its gorgeous color gamut…

    CVE-2025-2932 – JKDEVKIT WordPress Arbitrary File Deletion Vulnerability

    July 3, 2025

    CVE-2025-50145 – Apache HTTP Server Denial of Service

    June 14, 2025

    How to Use a Foreign Key in Django

    April 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.