Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Value-Driven AI Roadmap

      September 9, 2025

      This week in AI updates: Mistral’s new Le Chat features, ChatGPT updates, and more (September 5, 2025)

      September 6, 2025

      Designing For TV: Principles, Patterns And Practical Guidance (Part 2)

      September 5, 2025

      Neo4j introduces new graph architecture that allows operational and analytics workloads to be run together

      September 5, 2025

      ‘Job Hugging’ Trend Emerges as Workers Confront AI Uncertainty

      September 8, 2025

      Distribution Release: MocaccinoOS 25.09

      September 8, 2025

      Composition in CSS

      September 8, 2025

      DataCrunch raises €55M to boost EU AI sovereignty with green cloud infrastructure

      September 8, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Finally, safe array methods in JavaScript

      September 9, 2025
      Recent

      Finally, safe array methods in JavaScript

      September 9, 2025

      Perficient Interviewed for Forrester Report on AI’s Transformative Role in DXPs

      September 9, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold Stevie® Award for Technology Podcast

      September 9, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Distribution Release: MocaccinoOS 25.09

      September 8, 2025
      Recent

      Distribution Release: MocaccinoOS 25.09

      September 8, 2025

      Speed Isn’t Everything When Buying SSDs – Here’s What Really Matters!

      September 8, 2025

      14 Themes for Beautifying Your Ghostty Terminal

      September 8, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving

    DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving

    July 25, 2025

    Existing long-CoT reasoning models have achieved state-of-the-art performance in mathematical reasoning by generating reasoning trajectories with iterative self-verification and refinement. However, open-source long-CoT models depend only on natural language reasoning traces, making them computationally expensive and prone to errors without verification mechanisms. Although tool-aided reasoning provides greater efficiency and reliability for large-scale numerical computations through frameworks like OpenHands that integrate code interpreters, these agentic approaches struggle with abstract or conceptually complex reasoning problems.

    DualDistill Framework and Agentic-R1 Model

    Researchers from Carnegie Mellon University have proposed DualDistill, a distillation framework that combines trajectories from two complementary teachers to create a unified student model. The framework utilizes one reasoning-oriented teacher and one tool-augmented teacher to develop Agentic-R1, a model that learns to select the most appropriate strategy for each problem type dynamically. Agentic-R1 executes code for arithmetic and algorithmic tasks while employing natural language reasoning for abstract problems. DualDistill utilizes trajectory composition to distill knowledge from both complementary teachers, followed by self-distillation. Moreover, researchers used OpenHands as the agentic reasoning teacher, and DeepSeek-R1 as the text-based reasoning teacher.

    https://arxiv.org/abs/2507.05707

    Evaluation and Benchmarks

    The proposed method is evaluated across multiple benchmarks like DeepMath-L and Combinatorics300 to test various aspects of mathematical reasoning. It is compared against the baselines DeepSeek-R1-Distill and Qwen-2.5-Instruct. The student model, Agentic-R1, shows great performance improvements that benefit from both agentic and reasoning strategies. It outperforms two similarly sized models, each specializing in tool-assisted (Qwen2.5-7B-Instruct) or pure reasoning (Deepseek-R1-Distill7B) strategies. Agentic-R1 outperforms tool-based models by intelligently using reasoning strategies when required, while maintaining greater efficiency compared to pure reasoning models on standard mathematical tasks.

    Qualitative Analysis and Tool Usage Patterns

    Qualitative examples show that Agentic-R1 exhibits intelligent tool usage patterns, activating code execution tools in 79.2% of computationally demanding Combinatorics300 problems, while reducing activation to 52.0% for the simpler AMC dataset problems. Agentic-R1 learns to invoke tools appropriately through supervised fine-tuning alone, without explicit instruction, effectively balancing computational efficiency and reasoning accuracy.

    Robustness to Imperfect Teachers

    The framework remains effective even when guided by imperfect teachers. For instance, the agentic teacher achieves only 48.4% accuracy on Combinatorics300, yet the student model improved from 44.7% to 50.9%, ultimately outperforming the teacher.

    Conclusion

    In summary, the DualDistill framework effectively combines the strengths of natural language reasoning and tool-assisted problem solving by distilling complementary knowledge from two specialized teacher models into a single versatile student model, Agentic-R1. Through trajectory composition and self-distillation, Agentic-R1 learns to dynamically select the most appropriate strategy for each problem, balancing precision and computational efficiency. Evaluations across diverse mathematical reasoning benchmarks demonstrate that Agentic-R1 outperforms both pure reasoning and tool-based models, even when learning from imperfect teachers. This work highlights a promising approach to building adaptable AI agents capable of integrating heterogeneous problem-solving strategies for more robust and efficient reasoning.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project.

    Meet the AI Dev Newsletter read by 40k+ Devs and Researchers from NVIDIA, OpenAI, DeepMind, Meta, Microsoft, JP Morgan Chase, Amgen, Aflac, Wells Fargo and 100s more [SUBSCRIBE NOW]

    The post DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAlibaba Qwen Introduces Qwen3-MT: Next-Gen Multilingual Machine Translation Powered by Reinforcement Learning
    Next Article Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Amerikaanse overheid opgedragen aangevallen Citrix-lek meteen te patchen

    Security

    Xbox Game Pass gets all three Warcraft remasters, another Call of Duty game, and more

    News & Updates

    CVE-2025-40615 – Bookgy Reflected Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)
    Microsoft’s Copilot is trying to appeal to the masses — now power users are leaving it behind

    Microsoft’s Copilot is trying to appeal to the masses — now power users are leaving it behind

    News & Updates

    Highlights

    Development

    Cybercrime Losses Jump 33% in 2024, FBI Report Shows

    April 24, 2025

    The Federal Bureau of Investigation (FBI) has released its latest Internet Crime Report for 2024,…

    CVE-2025-6188 – Arista EOS UDP Port 3503 Remote Denial of Service and Authentication Bypass

    August 25, 2025

    Distribution Release: Network Security Toolkit 42-14476

    June 1, 2025

    Doom 64 EX+ is an improved modern version of Doom64EX

    May 11, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.