The ever-increasing parameter counts of deep learning models necessitate effective compression techniques for deployment on resource-constrained devices. This paper explores the application of information geometry, the study of density-induced metrics on parameter spaces, to analyze existing methods within the space of model compression, primarily focusing on operator factorization. Adopting this perspective highlights the core challenge: defining an optimal low-compute submanifold (or subset) and projecting onto it. We argue that many successful model compression approaches can be understood…
Source: Read MoreÂ