Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      15 Essential Skills to Look for When Hiring Node.js Developers for Enterprise Projects (2025-2026)

      August 4, 2025

      African training program creates developers with cloud-native skills

      August 4, 2025

      React.js for SaaS Platforms: How Top Development Teams Help Startups Launch Faster

      August 3, 2025

      Upwork Freelancers vs Dedicated React.js Teams: What’s Better for Your Project in 2025?

      August 1, 2025

      LastPass can now warn or block logins to shadow SaaS apps – here’s how

      August 4, 2025

      Get up to a year of Adobe Creative Cloud access for 40% off

      August 4, 2025

      Got 6 hours? This free AI training from Google and Goodwill can boost your resume today

      August 4, 2025

      Why I recommend this budget phone with a paper-like screen over ‘minimalist’ devices

      August 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Laravel Boost, your AI coding starter kit

      August 4, 2025
      Recent

      Laravel Boost, your AI coding starter kit

      August 4, 2025

      Using GitHub Copilot in VS Code

      August 4, 2025

      Optimizely Mission Control – Part I

      August 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Top 20 kubectl Commands Every Kubernetes Beginner Must Know

      August 4, 2025
      Recent

      Top 20 kubectl Commands Every Kubernetes Beginner Must Know

      August 4, 2025

      Microsoft’s record stock run collides with Nadella’s admission that 15,000 layoffs still ‘hurt’

      August 4, 2025

      Microsoft and Adobe Power Up Fantasy Premier League Fans with AI – Here’s How

      August 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation

    From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation

    June 17, 2025

    The Challenge of Fine-Tuning Large Transformer Models

    Self-attention enables transformer models to capture long-range dependencies in text, which is crucial for comprehending complex language patterns. These models work efficiently with massive datasets and achieve remarkable performance without needing task-specific structures. As a result, they are widely applied across industries, including software development, education, and content generation.

    A key limitation in applying these powerful models is the reliance on supervised fine-tuning. Adapting a base transformer to a specific task typically involves retraining the model with labeled data, which demands significant computational resources, sometimes amounting to thousands of GPU hours. This presents a major barrier for organizations that lack access to such hardware or seek quicker adaptation times. Consequently, there is a pressing need for methods that can elicit task-specific capabilities from pre-trained transformers without modifying their parameters.

    Inference-Time Prompting as an Alternative to Fine-Tuning

    To address this issue, researchers have explored inference-time techniques that guide the model’s behavior using example-based inputs, bypassing the need for parameter updates. Among these methods, in-context learning has emerged as a practical approach where a model receives a sequence of input-output pairs to generate predictions for new inputs. Unlike traditional training, these techniques operate during inference, enabling the base model to exhibit desired behaviors solely based on context. Despite their promise, there has been limited formal proof to confirm that such techniques can consistently match fine-tuned performance.

    Theoretical Framework: Approximating Fine-Tuned Models via In-Context Learning

    Researchers from Patched Codes, Inc. introduced a method grounded in the Turing completeness of transformers, demonstrating that a base model can approximate the behavior of a fine-tuned model using in-context learning, provided sufficient computational resources and access to the original training dataset. Their theoretical framework offers a quantifiable approach to understanding how dataset size, context length, and task complexity influence the quality of the approximation. The analysis specifically examines two task types—text generation and linear classification—and establishes bounds on dataset requirements to achieve fine-tuned-like outputs with a defined error margin.

    Prompt Design and Theoretical Guarantees

    The method involves designing a prompt structure that concatenates a dataset of labeled examples with a target query. The model processes this sequence, drawing patterns from the examples to generate a response. For instance, a prompt could include input-output pairs like sentiment-labeled reviews, followed by a new review whose sentiment must be predicted. The researchers constructed this process as a simulation of a Turing machine, where self-attention mimics the tape state and feed-forward layers act as transition rules. They also formalized conditions under which the total variation distance between the base and fine-tuned output distributions remains within an acceptable error ε. The paper provides a construction for this inference technique and quantifies its theoretical performance.

    Quantitative Results: Dataset Size and Task Complexity

    The researchers provided performance guarantees based on dataset size and task type. For text generation tasks involving a vocabulary size V, the dataset must be of sizeOmVϵ2log1δ to ensure the base model approximates the fine-tuned model within an error ε across mmm contexts. When the output length is fixed at l, a smaller dataset of size Ol logVϵ2log1δ suffices. For linear classification tasks where the input has dimension d, the required dataset size becomes Odϵ, or with context constraints, O1ϵ2log1δ. These results are robust under idealized assumptions but also adapted to practical constraints like finite context length and partial dataset availability using techniques such as retrieval-augmented generation.

    Implications: Towards Efficient and Scalable NLP Models

    This research presents a detailed and well-structured argument demonstrating that inference-time prompting can closely match the capabilities of supervised fine-tuning, provided sufficient contextual data is supplied. It successfully identifies a path toward more resource-efficient deployment of large language models, presenting both a theoretical justification and practical techniques. The study demonstrates that leveraging a model’s latent capabilities through structured prompts is not just viable but scalable and highly effective for specific NLP tasks.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBuilding High-Performance Financial Analytics Pipelines with Polars: Lazy Evaluation, Advanced Expressions, and SQL Integration
    Next Article How Anomalo solves unstructured data quality issues to deliver trusted assets for AI with AWS

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 4, 2025
    Machine Learning

    Ambisonics Super-Resolution Using A Waveform-Domain Neural Network

    August 4, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-7076 – BlackVue Dashcam 590X Configuration Handler Local File Inclusion Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-50144 – Apache HTTP Server Command Injection

    Common Vulnerabilities and Exposures (CVEs)

    SSPlot is a simple plotting utility and numerical simulator

    Linux

    CVE-2024-42190 – HCL Traveler for Microsoft Outlook DLL Hijacking Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-49591 – CryptPad Two-Factor Authentication Path Parameter Bypass

    June 18, 2025

    CVE ID : CVE-2025-49591

    Published : June 18, 2025, 11:15 p.m. | 2 hours, 47 minutes ago

    Description : CryptPad is a collaboration suite. Prior to version 2025.3.0, enforcement of Two-Factor Authentication (2FA) in CryptPad can be trivially bypassed, due to weak implementation of access controls. An attacker that compromises a user’s credentials can gain access to the victim’s account, even if the victim has 2FA set up. This is due to 2FA not being enforced if the path parameter is not 44 characters long, which can be bypassed by simply URL encoding a single character in the path. This issue has been patched in version 2025.3.0.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Talk to more users sooner

    August 4, 2025

    MLOps vs DevOps: Unifying AI and Software Development

    May 2, 2025

    CVE-2025-3846 – Markparticle WebServer SQL Injection Vulnerability

    April 21, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.