Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Representative Line: Brace Yourself

      September 18, 2025

      Beyond the Pilot: A Playbook for Enterprise-Scale Agentic AI

      September 18, 2025

      GitHub launches MCP Registry to provide central location for trusted servers

      September 18, 2025

      MongoDB brings Search and Vector Search to self-managed versions of database

      September 18, 2025

      Distribution Release: Security Onion 2.4.180

      September 18, 2025

      Distribution Release: Omarchy 3.0.1

      September 17, 2025

      Distribution Release: Mauna Linux 25

      September 16, 2025

      Distribution Release: SparkyLinux 2025.09

      September 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025
      Recent

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025

      Shopping Portal using Python Django & MySQL

      September 17, 2025

      Perficient Earns Adobe’s Real-time CDP Specialization

      September 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Valve Survey Reveals Slight Retreat in Steam-on-Linux Share

      September 18, 2025
      Recent

      Valve Survey Reveals Slight Retreat in Steam-on-Linux Share

      September 18, 2025

      Review: Elecrow’s All-in-one Starter Kit for Pico 2

      September 18, 2025

      FOSS Weekly #25.38: GNOME 49 Release, KDE Drama, sudo vs sudo-rs, Local AI on Android and More Linux Stuff

      September 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Building High-Performance Financial Analytics Pipelines with Polars: Lazy Evaluation, Advanced Expressions, and SQL Integration

    Building High-Performance Financial Analytics Pipelines with Polars: Lazy Evaluation, Advanced Expressions, and SQL Integration

    June 17, 2025

    In this tutorial, we delve into building an advanced data analytics pipeline using Polars, a lightning-fast DataFrame library designed for optimal performance and scalability. Our goal is to demonstrate how we can utilize Polars’ lazy evaluation, complex expressions, window functions, and SQL interface to process large-scale financial datasets efficiently. We begin by generating a synthetic financial time series dataset and move step-by-step through an end-to-end pipeline, from feature engineering and rolling statistics to multi-dimensional analysis and ranking. Throughout, we demonstrate how Polars empowers us to write expressive and performant data transformations, all while maintaining low memory usage and ensuring fast execution.

    Copy CodeCopiedUse a different Browser
    import polars as pl
    import numpy as np
    from datetime import datetime, timedelta
    import io
    
    
    try:
        import polars as pl
    except ImportError:
        import subprocess
        subprocess.run(["pip", "install", "polars"], check=True)
        import polars as pl
    
    
    print("<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f680.png" alt="🚀" class="wp-smiley" /> Advanced Polars Analytics Pipeline")
    print("=" * 50)

    We begin by importing the essential libraries, including Polars for high-performance DataFrame operations and NumPy for generating synthetic data. To ensure compatibility, we add a fallback installation step for Polars in case it isn’t already installed. With the setup ready, we signal the start of our advanced analytics pipeline.

    Copy CodeCopiedUse a different Browser
    np.random.seed(42)
    n_records = 100000
    dates = [datetime(2020, 1, 1) + timedelta(days=i//100) for i in range(n_records)]
    tickers = np.random.choice(['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'AMZN'], n_records)
    
    
    # Create complex synthetic dataset
    data = {
        'timestamp': dates,
        'ticker': tickers,
        'price': np.random.lognormal(4, 0.3, n_records),
        'volume': np.random.exponential(1000000, n_records).astype(int),
        'bid_ask_spread': np.random.exponential(0.01, n_records),
        'market_cap': np.random.lognormal(25, 1, n_records),
        'sector': np.random.choice(['Tech', 'Finance', 'Healthcare', 'Energy'], n_records)
    }
    
    
    print(f"<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f4ca.png" alt="📊" class="wp-smiley" /> Generated {n_records:,} synthetic financial records")

    We generate a rich, synthetic financial dataset with 100,000 records using NumPy, simulating daily stock data for major tickers such as AAPL and TSLA. Each entry includes key market features such as price, volume, bid-ask spread, market cap, and sector. This provides a realistic foundation for demonstrating advanced Polars analytics on a time-series dataset.

    Copy CodeCopiedUse a different Browser
    lf = pl.LazyFrame(data)
    
    
    result = (
        lf
        .with_columns([
            pl.col('timestamp').dt.year().alias('year'),
            pl.col('timestamp').dt.month().alias('month'),
            pl.col('timestamp').dt.weekday().alias('weekday'),
            pl.col('timestamp').dt.quarter().alias('quarter')
        ])
       
        .with_columns([
            pl.col('price').rolling_mean(20).over('ticker').alias('sma_20'),
            pl.col('price').rolling_std(20).over('ticker').alias('volatility_20'),
           
            pl.col('price').ewm_mean(span=12).over('ticker').alias('ema_12'),
           
            pl.col('price').diff().alias('price_diff'),
           
            (pl.col('volume') * pl.col('price')).alias('dollar_volume')
        ])
       
        .with_columns([
            pl.col('price_diff').clip(0, None).rolling_mean(14).over('ticker').alias('rsi_up'),
            pl.col('price_diff').abs().rolling_mean(14).over('ticker').alias('rsi_down'),
           
            (pl.col('price') - pl.col('sma_20')).alias('bb_position')
        ])
       
        .with_columns([
            (100 - (100 / (1 + pl.col('rsi_up') / pl.col('rsi_down')))).alias('rsi')
        ])
       
        .filter(
            (pl.col('price') > 10) &
            (pl.col('volume') > 100000) &
            (pl.col('sma_20').is_not_null())
        )
       
        .group_by(['ticker', 'year', 'quarter'])
        .agg([
            pl.col('price').mean().alias('avg_price'),
            pl.col('price').std().alias('price_volatility'),
            pl.col('price').min().alias('min_price'),
            pl.col('price').max().alias('max_price'),
            pl.col('price').quantile(0.5).alias('median_price'),
           
            pl.col('volume').sum().alias('total_volume'),
            pl.col('dollar_volume').sum().alias('total_dollar_volume'),
           
            pl.col('rsi').filter(pl.col('rsi').is_not_null()).mean().alias('avg_rsi'),
            pl.col('volatility_20').mean().alias('avg_volatility'),
            pl.col('bb_position').std().alias('bollinger_deviation'),
           
            pl.len().alias('trading_days'),
            pl.col('sector').n_unique().alias('sectors_count'),
           
            (pl.col('price') > pl.col('sma_20')).mean().alias('above_sma_ratio'),
           
            ((pl.col('price').max() - pl.col('price').min()) / pl.col('price').min())
              .alias('price_range_pct')
        ])
       
        .with_columns([
            pl.col('total_dollar_volume').rank(method='ordinal', descending=True).alias('volume_rank'),
            pl.col('price_volatility').rank(method='ordinal', descending=True).alias('volatility_rank')
        ])
       
        .filter(pl.col('trading_days') >= 10)
        .sort(['ticker', 'year', 'quarter'])
    )
    

    We load our synthetic dataset into a Polars LazyFrame to enable deferred execution, allowing us to chain complex transformations efficiently. From there, we enrich the data with time-based features and apply advanced technical indicators, such as moving averages, RSI, and Bollinger bands, using window and rolling functions. We then perform grouped aggregations by ticker, year, and quarter to extract key financial statistics and indicators. Finally, we rank the results based on volume and volatility, filter out under-traded segments, and sort the data for intuitive exploration, all while leveraging Polars’ powerful lazy evaluation engine to its full advantage.

    Copy CodeCopiedUse a different Browser
    df = result.collect()
    print(f"n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f4c8.png" alt="📈" class="wp-smiley" /> Analysis Results: {df.height:,} aggregated records")
    print("nTop 10 High-Volume Quarters:")
    print(df.sort('total_dollar_volume', descending=True).head(10).to_pandas())
    
    
    print("n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f50d.png" alt="🔍" class="wp-smiley" /> Advanced Analytics:")
    
    
    pivot_analysis = (
        df.group_by('ticker')
        .agg([
            pl.col('avg_price').mean().alias('overall_avg_price'),
            pl.col('price_volatility').mean().alias('overall_volatility'),
            pl.col('total_dollar_volume').sum().alias('lifetime_volume'),
            pl.col('above_sma_ratio').mean().alias('momentum_score'),
            pl.col('price_range_pct').mean().alias('avg_range_pct')
        ])
        .with_columns([
            (pl.col('overall_avg_price') / pl.col('overall_volatility')).alias('risk_adj_score'),
           
            (pl.col('momentum_score') * 0.4 +
             pl.col('avg_range_pct') * 0.3 +
             (pl.col('lifetime_volume') / pl.col('lifetime_volume').max()) * 0.3)
             .alias('composite_score')
        ])
        .sort('composite_score', descending=True)
    )
    
    
    print("n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f3c6.png" alt="🏆" class="wp-smiley" /> Ticker Performance Ranking:")
    print(pivot_analysis.to_pandas())

    Once our lazy pipeline is complete, we collect the results into a DataFrame and immediately review the top 10 quarters based on total dollar volume. This helps us identify periods of intense trading activity. We then take our analysis a step further by grouping the data by ticker to compute higher-level insights, such as lifetime trading volume, average price volatility, and a custom composite score. This multi-dimensional summary helps us compare stocks not just by raw volume, but also by momentum and risk-adjusted performance, unlocking deeper insights into overall ticker behavior.

    Copy CodeCopiedUse a different Browser
    print("n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f504.png" alt="🔄" class="wp-smiley" /> SQL Interface Demo:")
    pl.Config.set_tbl_rows(5)
    
    
    sql_result = pl.sql("""
        SELECT
            ticker,
            AVG(avg_price) as mean_price,
            STDDEV(price_volatility) as volatility_consistency,
            SUM(total_dollar_volume) as total_volume,
            COUNT(*) as quarters_tracked
        FROM df
        WHERE year >= 2021
        GROUP BY ticker
        ORDER BY total_volume DESC
    """, eager=True)
    
    
    print(sql_result)
    
    
    print(f"n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/26a1.png" alt="⚡" class="wp-smiley" /> Performance Metrics:")
    print(f"   • Lazy evaluation optimizations applied")
    print(f"   • {n_records:,} records processed efficiently")
    print(f"   • Memory-efficient columnar operations")
    print(f"   • Zero-copy operations where possible")
    
    
    print(f"n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f4be.png" alt="💾" class="wp-smiley" /> Export Options:")
    print("   • Parquet (high compression): df.write_parquet('data.parquet')")
    print("   • Delta Lake: df.write_delta('delta_table')")
    print("   • JSON streaming: df.write_ndjson('data.jsonl')")
    print("   • Apache Arrow: df.to_arrow()")
    
    
    print("n<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/2705.png" alt="✅" class="wp-smiley" /> Advanced Polars pipeline completed successfully!")
    print("<img src="https://s.w.org/images/core/emoji/15.1.0/72x72/1f3af.png" alt="🎯" class="wp-smiley" /> Demonstrated: Lazy evaluation, complex expressions, window functions,")
    print("   SQL interface, advanced aggregations, and high-performance analytics")

    We wrap up the pipeline by showcasing Polars’ elegant SQL interface, running an aggregate query to analyze post-2021 ticker performance with familiar SQL syntax. This hybrid capability enables us to blend expressive Polars transformations with declarative SQL queries seamlessly. To highlight its efficiency, we print key performance metrics, emphasizing lazy evaluation, memory efficiency, and zero-copy execution. Finally, we demonstrate how easily we can export results in various formats, such as Parquet, Arrow, and JSONL, making this pipeline both powerful and production-ready. With that, we complete a full-circle, high-performance analytics workflow using Polars.

    In conclusion, we’ve seen firsthand how Polars’ lazy API can optimize complex analytics workflows that would otherwise be sluggish in traditional tools. We’ve developed a comprehensive financial analysis pipeline, spanning from raw data ingestion to rolling indicators, grouped aggregations, and advanced scoring, all executed with blazing speed. Not only that, but we also tapped into Polars’ powerful SQL interface to run familiar queries seamlessly over our DataFrames. This dual ability to write both functional-style expressions and SQL makes Polars an incredibly flexible tool for any data scientist.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post Building High-Performance Financial Analytics Pipelines with Polars: Lazy Evaluation, Advanced Expressions, and SQL Integration appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous Articlestateless in REST
    Next Article From Fine-Tuning to Prompt Engineering: Theory and Practice for Efficient Transformer Adaptation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-53021 – “Moodle Session Fixation Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Google Pixel 9 Pro vs. 8 Pro vs. 7 Pro vs. 6 Pro: Here are the biggest differences when upgrading

    News & Updates

    Online Vanderbilt Assessment Scale | ADHD Screening Tool

    Web Development

    CVE-2025-3753 – ROS Robot Operating System ‘rosbag’ Code Execution Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Look out, Meta Ray-Bans! These AI glasses just raised over $1M in pre-orders in 3 days

    September 2, 2025

    Rokid Glasses combine the best features of Meta Ray-Bans with next-gen upgrades. And a lot…

    Agent mode 101: All about GitHub Copilot’s powerful mode

    May 22, 2025

    CVE-2025-4012 – Playeduxyz PlayEdu SSRF Vulnerability

    April 28, 2025

    CVE-2025-35940 – ArchiverSpaApi JWT Signing Key Hard-Coded Vulnerability

    June 10, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.