Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      From Data To Decisions: UX Strategies For Real-Time Dashboards

      September 13, 2025

      Honeycomb launches AI observability suite for developers

      September 13, 2025

      Low-Code vs No-Code Platforms for Node.js: What CTOs Must Know Before Investing

      September 12, 2025

      ServiceNow unveils Zurich AI platform

      September 12, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Distribution Release: Q4OS 6.1

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Optimizely Mission Control – Part III

      September 14, 2025
      Recent

      Optimizely Mission Control – Part III

      September 14, 2025

      Learning from PHP Log to File Example

      September 13, 2025

      Online EMI Calculator using PHP – Calculate Loan EMI, Interest, and Amortization Schedule

      September 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025
      Recent

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025

      Dmitry — The Deep Magic

      September 13, 2025

      Right way to record and share our Terminal sessions

      September 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models

    MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models

    June 14, 2025

    LLMs are increasingly seen as key to achieving Artificial General Intelligence (AGI), but they face major limitations in how they handle memory. Most LLMs rely on fixed knowledge stored in their weights and short-lived context during use, making it hard to retain or update information over time. Techniques like RAG attempt to incorporate external knowledge but lack structured memory management. This leads to problems such as forgetting past conversations, poor adaptability, and isolated memory across platforms. Fundamentally, today’s LLMs don’t treat memory as a manageable, persistent, or sharable system, limiting their real-world usefulness. 

    To address the limitations of memory in current LLMs, researchers from MemTensor (Shanghai) Technology Co., Ltd., Shanghai Jiao Tong University, Renmin University of China, and the Research Institute of China Telecom have developed MemO. This memory operating system makes memory a first-class resource in language models. At its core is MemCube, a unified memory abstraction that manages parametric, activation, and plaintext memory. MemOS enables structured, traceable, and cross-task memory handling, allowing models to adapt continuously, internalize user preferences, and maintain behavioral consistency. This shift transforms LLMs from passive generators into evolving systems capable of long-term learning and cross-platform coordination. 

    As AI systems grow more complex—handling multiple tasks, roles, and data types—language models must evolve beyond understanding text to also retaining memory and learning continuously. Current LLMs lack structured memory management, which limits their ability to adapt and grow over time. MemOS, a new system that treats memory as a core, schedulable resource. It enables long-term learning through structured storage, version control, and unified memory access. Unlike traditional training, MemOS supports a continuous “memory training” paradigm that blurs the line between learning and inference. It also emphasizes governance, ensuring traceability, access control, and safe use in evolving AI systems. 

    MemOS is a memory-centric operating system for language models that treats memory not just as stored data but as an active, evolving component of the model’s cognition. It organizes memory into three distinct types: Parametric Memory (knowledge baked into model weights via pretraining or fine-tuning), Activation Memory (temporary internal states, such as KV caches and attention patterns, used during inference), and Plaintext Memory (editable, retrievable external data, like documents or prompts). These memory types interact within a unified framework called the MemoryCube (MemCube), which encapsulates both content and metadata, allowing dynamic scheduling, versioning, access control, and transformation across types. This structured system enables LLMs to adapt, recall relevant information, and efficiently evolve their capabilities, transforming them into more than just static generators.

    At the core of MemOS is a three-layer architecture: the Interface Layer handles user inputs and parses them into memory-related tasks; the Operation Layer manages the scheduling, organization, and evolution of different types of memory; and the Infrastructure Layer ensures safe storage, access governance, and cross-agent collaboration. All interactions within the system are mediated through MemCubes, allowing traceable, policy-driven memory operations. Through modules like MemScheduler, MemLifecycle, and MemGovernance, MemOS maintains a continuous and adaptive memory loop—from the moment a user sends a prompt, to memory injection during reasoning, to storing useful data for future use. This design not only enhances the model’s responsiveness and personalization but also ensures that memory remains structured, secure, and reusable. 

    In conclusion, MemOS is a memory operating system designed to make memory a central, manageable component in LLMs. Unlike traditional models that depend mostly on static model weights and short-term runtime states, MemOS introduces a unified framework for handling parametric, activation, and plaintext memory. At its core is MemCube, a standardized memory unit that supports structured storage, lifecycle management, and task-aware memory augmentation. The system enables more coherent reasoning, adaptability, and cross-agent collaboration. Future goals include enabling memory sharing across models, self-evolving memory blocks, and building a decentralized memory marketplace to support continual learning and intelligent evolution. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleInternal Coherence Maximization (ICM): A Label-Free, Unsupervised Training Framework for LLMs
    Next Article Best of 2025 | Hotel Operations Solution in Singapore

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Windows 11 news and updates in June: Microsoft’s AI agent in Settings makes adjusting your PC easier than ever

    News & Updates

    CRUSH is an astronomical data reduction and imaging tool

    Linux

    Battlefield 6 Open Beta Weekend 2 players slam its version of Rush — here’s why the “mode is dead” in the eyes of many, and balance changes the devs made [UPDATED]

    News & Updates

    How passkeys work: Going passwordless with public key cryptography

    News & Updates

    Highlights

    CVE-2025-6367 – D-Link DIR-619L Stack-Based Buffer Overflow Vulnerability

    June 20, 2025

    CVE ID : CVE-2025-6367

    Published : June 20, 2025, 9:15 p.m. | 1 hour, 29 minutes ago

    Description : A vulnerability was found in D-Link DIR-619L 2.06B01. It has been declared as critical. This vulnerability affects unknown code of the file /goform/formSetDomainFilter. The manipulation of the argument curTime/sched_name_%d/url_%d leads to stack-based buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.

    Severity: 8.8 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    LockBit Attempts Comeback with LockBit 5.0 Ransomware Release

    September 9, 2025

    Qilin Solidifies Claim as Top Ransomware Group

    July 1, 2025

    Mitigating Hallucinations in Large Vision-Language Models: A Latent Space Steering Approach

    April 2, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.