Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Ultimate Guide to Node.js Development Pricing for Enterprises

      July 29, 2025

      Stack Overflow: Developers’ trust in AI outputs is worsening year over year

      July 29, 2025

      Web Components: Working With Shadow DOM

      July 28, 2025

      Google’s new Opal tool allows users to create mini AI apps with no coding required

      July 28, 2025

      I replaced my Samsung OLED TV with this Sony Mini LED model for a week – and didn’t regret it

      July 29, 2025

      I tested the most popular robot mower on the market – and it was a $5,000 crash out

      July 29, 2025

      5 gadgets and accessories that leveled up my gaming setup (including a surprise console)

      July 29, 2025

      Why I’m patiently waiting for the Samsung Z Fold 8 next year (even though the foldable is already great)

      July 29, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Performance Analysis with Laravel’s Measurement Tools

      July 29, 2025
      Recent

      Performance Analysis with Laravel’s Measurement Tools

      July 29, 2025

      Memoization and Function Caching with this PHP Package

      July 29, 2025

      Laracon US 2025 Livestream

      July 29, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft mysteriously offered a Windows 11 upgrade to this unsupported Windows 10 PC — despite it failing to meet the “non-negotiable” TPM 2.0 requirement

      July 29, 2025
      Recent

      Microsoft mysteriously offered a Windows 11 upgrade to this unsupported Windows 10 PC — despite it failing to meet the “non-negotiable” TPM 2.0 requirement

      July 29, 2025

      With Windows 10’s fast-approaching demise, this Linux migration tool could let you ditch Microsoft’s ecosystem with your data and apps intact — but it’s limited to one distro

      July 29, 2025

      Windows 10 is 10 years old today — let’s look back at 10 controversial and defining moments in its history

      July 29, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Internal Coherence Maximization (ICM): A Label-Free, Unsupervised Training Framework for LLMs

    Internal Coherence Maximization (ICM): A Label-Free, Unsupervised Training Framework for LLMs

    June 14, 2025

    Post-training methods for pre-trained language models (LMs) depend on human supervision through demonstrations or preference feedback to specify desired behaviors. However, this approach faces critical limitations as tasks and model behaviors become very complex. Human supervision is unreliable in these scenarios as LMs learn to mimic mistakes in demonstrations or exploit inherent flaws in feedback systems. The core challenge lies in training LMs for tasks that exceed human capability in reliability in demonstrations or evaluations. Recent research has identified diverse failure modes, including reward-hacking of human-designed supervision signals or real humans themselves.

    Limitations of Human Supervision in LLM Post-Training

    Researchers have explored several approaches to scale beyond human supervision. One standard method utilizes high-quality verifiable rewards, such as matching model outputs with ground-truth solutions in mathematical domains. Despite evidence that pre-trained base models have strong latent capabilities for downstream tasks, with post-training adding minimal improvements, effective elicitation remains challenging. The Contrast Consistent Search (CCS) method is an unsupervised elicitation approach that uses logical consistency to find latent knowledge without supervision. However, CCS underperforms supervised approaches and often fails to identify knowledge due to other prominent features satisfying consistency properties.

    Introducing Internal Coherence Maximization (ICM)

    Researchers from Anthropic, Schmidt Sciences, Independent, Constellation, New York University, and George Washington University have proposed Internal Coherence Maximization (ICM), which fine-tunes pre-trained models on their own generated labels without using any provided labels. ICM solves this by searching for label sets that are both logically consistent and mutually predictable according to the pre-trained model. Since optimal label set identification remains computationally infeasible, ICM uses a simulated annealing-inspired search algorithm to approximate the maximum objective. Moreover, this method matches the performance of training on golden labels on TruthfulQA and GSM8K, and outperforms training on crowdsourced human labels on Alpaca.

    How the ICM Algorithm Works

    The ICM algorithm follows an iterative three-step process: (a) the system samples a new unlabeled example from the dataset for potential inclusion, (b) it determines the optimal label for this example while simultaneously resolving any logical inconsistencies, and (c) the algorithm evaluates whether to accept this new labeled example based on the scoring function. ICM is evaluated across three datasets: TruthfulQA for truthfulness assessment, GSM8K-verification for mathematical correctness, and Alpaca for helpfulness and harmlessness. Researchers used four baselines in their experiments: Zero-shot, Zero-shot (Chat), Golden Label, and Human Label. Moreover, Experiments used two open-weight models, Llama 3.1 8B and 70B, and two proprietary models: Claude 3 Haiku and Claude 3.5 Haiku.

    Benchmark Performance and Model Comparisons

    In superhuman capability elicitation tasks, ICM matches golden supervision accuracy at 80%, outperforming the estimated human accuracy of 60%. Using ICM-generated reward models, researchers successfully trained an assistant chatbot without human supervision. The unsupervised reward model achieves 75.0% accuracy on RewardBench, compared to 72.2% for human-supervised alternatives trained on production data. Moreover, using both the unsupervised and human-supervised RM, two policies are trained with RL to create helpful, harmless, and honest assistants. The policy trained with the unsupervised RM achieves a 60% win rate. However, these policies still lag behind the publicly released Claude 3.5 Haiku, which achieves 92% win rates.

    Conclusion and Future Outlook

    This paper introduces Internal Coherence Maximization (ICM), an advancement in unsupervised LM for fine-tuning pre-trained models on self-generated labels. The method consistently matches golden supervision performance and surpasses crowdsourced human supervision across GSM8K-verification, TruthfulQA, and Alpaca reward modeling tasks. However, ICM’s limitations include dependency on concept salience within pre-trained models and ineffectiveness with long inputs due to context window constraints. As LMs advance beyond human evaluation capabilities, ICM offers promising alternatives to traditional RLHF, ensuring model alignment with human intent without human supervision boundaries.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post Internal Coherence Maximization (ICM): A Label-Free, Unsupervised Training Framework for LLMs appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleJohn the Ripper is an advanced offline password cracker
    Next Article MemOS: A Memory-Centric Operating System for Evolving and Adaptive Large Language Models

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 29, 2025
    Machine Learning

    Amazon Develops an AI Architecture that Cuts Inference Time 30% by Activating Only Relevant Neurons

    July 29, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    AMD Radeon RX 9060 XT GPU Now Available In 8GB & 16GB VRAM Options

    Operating Systems

    CVE-2025-6565 – Netgear WNCE3001 HTTP POST Request Handler Stack-Based Buffer Overflow

    Common Vulnerabilities and Exposures (CVEs)

    12 Best Free and Open Source Linux Dictionary Tools

    Linux

    CVE-2025-1411 – IBM Security Verify Directory Container Privilege Escalation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Machine Learning

    Build a conversational data assistant, Part 2 – Embedding generative business intelligence with Amazon Q in QuickSight

    July 11, 2025

    In Part 1 of this series, we explored how Amazon’s Worldwide Returns & ReCommerce (WWRR)…

    CVE-2025-24780 – Printcart Web to Print Product Designer for WooCommerce SQL Injection

    July 4, 2025

    CVE-2025-3640 – Moodle Information Disclosure Vulnerability

    April 25, 2025

    Microsoft’s Windows 365 Link mini PC is now available — full specs and pricing revealed

    April 2, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.