Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      From Data To Decisions: UX Strategies For Real-Time Dashboards

      September 13, 2025

      Honeycomb launches AI observability suite for developers

      September 13, 2025

      Low-Code vs No-Code Platforms for Node.js: What CTOs Must Know Before Investing

      September 12, 2025

      ServiceNow unveils Zurich AI platform

      September 12, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Distribution Release: Q4OS 6.1

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Optimizely Mission Control – Part III

      September 14, 2025
      Recent

      Optimizely Mission Control – Part III

      September 14, 2025

      Learning from PHP Log to File Example

      September 13, 2025

      Online EMI Calculator using PHP – Calculate Loan EMI, Interest, and Amortization Schedule

      September 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025
      Recent

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025

      Dmitry — The Deep Magic

      September 13, 2025

      Right way to record and share our Terminal sessions

      September 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Apple Researchers Reveal Structural Failures in Large Reasoning Models Using Puzzle-Based Evaluation

    Apple Researchers Reveal Structural Failures in Large Reasoning Models Using Puzzle-Based Evaluation

    June 13, 2025

    Artificial intelligence has undergone a significant transition from basic language models to advanced models that focus on reasoning tasks. These newer systems, known as Large Reasoning Models (LRMs), represent a class of tools designed to simulate human-like thinking by producing intermediate reasoning steps before arriving at conclusions. The focus has moved from generating accurate outputs to understanding the process that leads to these answers. This shift has raised questions about how these models manage tasks with layered complexity and whether they truly possess reasoning abilities or are simply leveraging training patterns to guess outcomes.

    Redefining Evaluation: Moving Beyond Final Answer Accuracy

    A recurring problem with evaluating machine reasoning is that traditional benchmarks mostly assess the final answer without examining the steps involved in arriving at it. Final answer accuracy alone does not reveal the quality of internal reasoning, and many benchmarks are contaminated with data that may have been seen during training. This creates a misleading picture of a model’s true capabilities. To explore actual reasoning, researchers require environments where problem difficulty can be precisely controlled and intermediate steps can be analyzed. Without such settings, it is hard to determine whether these models can generalize solutions or merely memorize patterns.

    To evaluate reasoning more reliably, the research team at Apple designed a setup using four puzzle environments: Tower of Hanoi, River Crossing, Checkers Jumping, and Blocks World. These puzzles allow precise manipulation of complexity by changing elements such as the number of disks, checkers, or agents involved. Each task requires different reasoning abilities, such as constraint satisfaction and sequential planning. Importantly, these environments are free from typical data contamination, enabling thorough checks of both outcomes and the reasoning steps in between. This method ensures a detailed investigation of how models behave across varied task demands.

    The research introduced a comparative study using two sets of models: Claude 3.7 Sonnet and DeepSeek-R1, along with their “thinking” variants and their standard LLM counterparts. These models were tested across the puzzles under identical token budgets to measure both accuracy and reasoning efficiency. This helped reveal performance shifts across low, medium, and high-complexity tasks. One of the most revealing observations was the formation of three performance zones. In simple tasks, non-thinking models outperformed reasoning variants. For medium complexity, reasoning models gained an edge, while both types collapsed completely as complexity peaked.

    Comparative Insights: Thinking vs. Non-Thinking Models Under Stress

    An in-depth analysis revealed that reasoning effort increased with task difficulty up to a certain point but then declined despite the availability of resources. For instance, in the Tower of Hanoi, Claude 3.7 Sonnet (thinking) maintained high accuracy until complexity reached a certain threshold, after which performance dropped to zero. Even when these models were supplied with explicit solution algorithms, they failed to execute steps beyond specific complexity levels. In one case, Claude 3.7 could manage around 100 steps correctly for the Tower of Hanoi but was unable to complete simpler River Crossing tasks requiring only 11 moves when $N = 3$. This inconsistency exposed serious limitations in symbolic manipulation and exact computation.

    The performance breakdown also highlighted how LRMs handle their internal thought process. Models frequently engaged in “overthinking,” generating correct intermediate solutions early in the process but continuing to explore incorrect paths. This led to inefficient use of tokens. At medium complexity levels, models began to find correct answers later in their reasoning chains. However, at high levels of complexity, they failed to produce accurate solutions. Quantitative analysis confirmed that solution accuracy dropped to near zero as the problem complexity increased, and the number of reasoning tokens allocated began to decline unexpectedly.

    Scaling Limits and the Collapse of Reasoning

    This research presents a sobering assessment of how current Learning Resource Management Systems (LRMs) operate. Research from Apple makes it clear that, despite some progress, today’s reasoning models are still far from achieving generalized reasoning. The work identifies how performance scales, where it collapses, and why over-reliance on benchmark accuracy fails to capture deeper reasoning behavior. Controlled puzzle environments have proven to be a powerful tool for uncovering hidden weaknesses in these systems and emphasizing the need for more robust designs in the future.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 99k+ ML SubReddit and Subscribe to our Newsletter.

    The post Apple Researchers Reveal Structural Failures in Large Reasoning Models Using Puzzle-Based Evaluation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBuild a Secure AI Code Execution Workflow Using Daytona SDK
    Next Article Google AI Unveils a Hybrid AI-Physics Model for Accurate Regional Climate Risk Forecasts with Better Uncertainty Assessment

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Rilasciato PeaZip 10.5: Miglioramenti per il Gestore di File e Archivi

    Linux

    Microsoft’s Will Open Source Windows 11’s Native UI Framework — Here’s What to Expect

    News & Updates

    Add QR Code field functionality to your Filament UI’s

    Development

    CVE-2025-45800 – TOTOLINK A950RG Remote Command Execution

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Roku clarifies that it’s not rolling out new pause ads after all

    May 6, 2025

    UPDATE: Despite reports and confusion over new ads, Roku says nothing has changed. Source: Latest…

    CVE-2025-26064 – Intelbras RX1500/RX3000 Cross-Site Scripting Vulnerability

    July 31, 2025

    Building a Multi-Node Graph-Based AI Agent Framework for Complex Task Automation

    July 27, 2025

    CVE-2025-50870 – Institute-of-Current-Students Student Information Disclosure via Incorrect Access Control

    August 1, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.