Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      From Data To Decisions: UX Strategies For Real-Time Dashboards

      September 13, 2025

      Honeycomb launches AI observability suite for developers

      September 13, 2025

      Low-Code vs No-Code Platforms for Node.js: What CTOs Must Know Before Investing

      September 12, 2025

      ServiceNow unveils Zurich AI platform

      September 12, 2025

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Optimizely Mission Control – Part III

      September 14, 2025
      Recent

      Optimizely Mission Control – Part III

      September 14, 2025

      Learning from PHP Log to File Example

      September 13, 2025

      Online EMI Calculator using PHP – Calculate Loan EMI, Interest, and Amortization Schedule

      September 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      DistroWatch Weekly, Issue 1139

      September 14, 2025
      Recent

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025

      Dmitry — The Deep Magic

      September 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»VeBrain: A Unified Multimodal AI Framework for Visual Reasoning and Real-World Robotic Control

    VeBrain: A Unified Multimodal AI Framework for Visual Reasoning and Real-World Robotic Control

    June 10, 2025

    Bridging Perception and Action in Robotics

    Multimodal Large Language Models (MLLMs) hold promise for enabling machines, such as robotic arms and legged robots, to perceive their surroundings, interpret scenarios, and take meaningful actions. The integration of such intelligence into physical systems is advancing the field of robotics, pushing it toward autonomous machines that don’t just see and describe but also plan and move within their environments based on contextual understanding.

    Despite the growing power of MLLMs, one persistent issue is their inability to combine vision, reasoning, and physical interaction into one cohesive system. Typically, models trained to understand images or text fall short when asked to control robots in real-world spaces. The core problem is that understanding a scene is fundamentally different from acting within it. Multimodal understanding focuses on perception and analysis, while physical control needs precise, real-time decision-making based on that perception. This disconnect creates bottlenecks when attempting to build agents that must simultaneously observe, reason, and act in varied environments.

    Limitations of Prior VLA Models

    Previous tools designed for robot control rely heavily on vision-language-action (VLA) models. These models train on extensive robotic datasets to convert visual observations into control signals. While some solutions try to preserve the reasoning capability of MLLMs by translating commands into text-based actions, they face difficulty in maintaining accuracy and adaptability during control tasks. For instance, VLAs often degrade in performance when applied to diverse or long-horizon robotic operations. Furthermore, due to the gap between image-based understanding and motion control, these tools usually fail to generalize across different environments or robot types.

    Introducing VeBrain: A Unified Multimodal Framework

    Researchers from Shanghai AI Laboratory, Tsinghua University, and SenseTime Research have introduced a unified framework called Visual Embodied Brain (VeBrain) in collaboration with multiple other institutes. VeBrain reformulates robot control as text-based tasks within a 2D visual space, aligning it more closely with how MLLMs function. The framework integrates multimodal understanding, spatial reasoning, and robotic control into one structure. A specially designed robotic adapter processes the MLLM’s output into executable movement policies, enabling a single model to manage perception, reasoning, and control. VeBrain is also supported by a high-quality instruction dataset called VeBrain-600k, which combines over 600,000 samples of multimodal tasks, including robot motion and reasoning steps.

    Technical Components: Architecture and Robotic Adapter

    To carry out its functions, VeBrain utilizes an architecture based on Qwen2.5-VL, augmented with components that enable real-world control. The robotic adapter contains four key modules. The point tracker updates 2D keypoints as the robot’s view changes, ensuring accurate targeting. The movement controller transforms 2D key points into 3D movements by combining image data with depth maps. The skill executor maps predicted actions, such as “turn” or “grasp,” to pre-trained robotic skills. Lastly, the dynamic takeover module monitors failures or anomalies, handing control back to the MLLM when needed. These modules form a closed-loop system that makes decisions, acts, and self-corrects, allowing robots to operate effectively in diverse situations.

    Performance Evaluation Across Multimodal and Robotic Benchmarks

    VeBrain was evaluated across 13 multimodal and 5 spatial benchmarks. On MMVet, it achieved a 5.6% improvement over Qwen2.5-VL. It achieved a score of 101.5 on the CIDEr metric for ScanQA and scored 83.7 on MMBench. On the VSI benchmark, it averaged 39.9, outperforming Qwen2.5-VL’s 35.9. In robotic evaluations, VeBrain showed 86.4% success across seven-legged robot tasks, significantly surpassing models like VLA and π0, which scored 32.1% and 31.4%, respectively. On robotic arm tasks, it achieved a success rate of 74.3%, outperforming others by up to 80%. These results show VeBrain’s ability to handle long-horizon and spatially complex control challenges with high reliability.

    Conclusion

    The research presents a compelling direction for embodied AI. Researchers succeeded in redefining robot control as a language task, enabling high-level reasoning and low-level action to coexist. The method bridges the gap between image understanding and robot execution in a way that’s both functional and scalable. With a robust design and strong performance, VeBrain signals a shift toward more unified, intelligent robotics systems capable of operating autonomously across diverse tasks and environments.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 99k+ ML SubReddit and Subscribe to our Newsletter.

    The post VeBrain: A Unified Multimodal AI Framework for Visual Reasoning and Real-World Robotic Control appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleFrom Text to Action: How Tool-Augmented AI Agents Are Redefining Language Models with Reasoning, Memory, and Autonomy
    Next Article Apple introduces a delightful and elegant new software design

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-39203 – MicroSCADA X SYS600 IEC 61850 Denial of Service Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    April 2025 Wallpapers Edition

    Web Development

    Powerful JavaScript Frameworks for Game Developers

    Development

    CVE-2025-5838 – PHPGurukul Employee Record Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    7 tasks that waste your IT team’s time

    April 9, 2025

    IT teams’ time is always limited, and it doesn’t help when other things get in…

    CVE-2025-20154 – Cisco TWAMP Server Out-of-Bounds Array Access Denial of Service Vulnerability

    May 7, 2025

    CVE-2025-7819 – PHPGurukul Apartment Visitors Management System Cross-Site Scripting

    July 19, 2025

    Text-to-speech with feeling – this new AI model does everything but shed a tear

    June 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.