Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      In-House vs. Outsource Node.js Development Teams: 9 Key Differences for the C-Suite (2025)

      July 19, 2025

      Why Non-Native Content Designers Improve Global UX

      July 18, 2025

      DevOps won’t scale without platform engineering and here’s why your teams are still stuck

      July 18, 2025

      This week in AI dev tools: Slack’s enterprise search, Claude Code’s analytics dashboard, and more (July 18, 2025)

      July 18, 2025

      I ditched my Bluetooth speakers for this slick turntable – and it’s more practical than I thought

      July 19, 2025

      This split keyboard offers deep customization – if you’re willing to go all in

      July 19, 2025

      I spoke with an AI version of myself, thanks to Hume’s free tool – how to try it

      July 19, 2025

      I took a walk with Meta’s new Oakley smart glasses – they beat my Ray-Bans in every way

      July 19, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 19, 2025
      Recent

      The details of TC39’s last meeting

      July 19, 2025

      Simple wrapper for Chrome’s built-in local LLM (Gemini Nano)

      July 19, 2025

      Online Examination System using PHP and MySQL

      July 18, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Top 7 Computer Performance Test Tools Online (Free & Fast)

      July 19, 2025
      Recent

      Top 7 Computer Performance Test Tools Online (Free & Fast)

      July 19, 2025

      10 Best Windows 11 Encryption Software

      July 19, 2025

      Google Chrome Is Testing Dynamic Country Detection for Region-Specific Features

      July 19, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMs

    NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMs

    June 2, 2025

    Diffusion-based large language models (LLMs) are being explored as a promising alternative to traditional autoregressive models, offering the potential for simultaneous multi-token generation. By using bidirectional attention mechanisms, these models aim to accelerate decoding, theoretically providing faster inference than autoregressive systems. However, despite their promise, diffusion models often struggle in practice to deliver competitive inference speeds, thereby limiting their ability to match the real-world performance of autoregressive large language models LLMs.

    The primary challenge lies in the inefficiency of inference in diffusion-based LLMs. These models typically do not support key-value (KV) cache mechanisms, which are essential for accelerating inference by reusing previously computed attention states. Without KV caching, every new generation step in diffusion models repeats full attention computations, making them computationally intensive. Further, when decoding multiple tokens simultaneously—a key feature of diffusion models—the generation quality often deteriorates due to disruptions in token dependencies under the conditional independence assumption. This makes diffusion models unreliable for practical deployment despite their theoretical strengths.

    Attempts to improve diffusion LLMs have focused on strategies like block-wise generation and partial caching. For instance, models such as LLaDA and Dream incorporate masked diffusion techniques to facilitate multi-token generation. However, they still lack an effective key-value (KV) cache system, and parallel decoding in these models often results in incoherent outputs. While some approaches use auxiliary models to approximate token dependencies, these methods introduce additional complexity without fully addressing the underlying performance issues. As a result, the speed and quality of generation in diffusion LLMs continue to lag behind autoregressive models.

    Researchers from NVIDIA, The University of Hong Kong, and MIT introduced Fast-dLLM, a framework developed to address these limitations without requiring retraining. Fast-dLLM brings two innovations to diffusion LLMs: a block-wise approximate KV Cache mechanism and a confidence-aware parallel decoding strategy. The approximate KV Cache is tailored for the bidirectional nature of diffusion models, allowing activations from previous decoding steps to be reused efficiently. The confidence-aware parallel decoding selectively decodes tokens based on a confidence threshold, reducing errors that arise from the assumption of token independence. This approach offers a balance between speed and generation quality, making it a practical solution for diffusion-based text generation tasks.

    In-depth, Fast-dLLM’s KV Cache method is implemented by dividing sequences into blocks. Before generating a block, KV activations for other blocks are computed and stored, enabling reuse during subsequent decoding steps. After generating a block, the cache is updated across all tokens, which minimizes computation redundancy while maintaining accuracy. The DualCache version extends this approach by caching both prefix and suffix tokens, taking advantage of high similarity between adjacent inference steps, as demonstrated by cosine similarity heatmaps in the paper. For the parallel decoding component, the system evaluates the confidence of each token and decodes only those exceeding a set threshold. This prevents dependency violations from simultaneous sampling and ensures higher-quality generation even when multiple tokens are decoded in a single step.

    Fast-dLLM achieved significant performance improvements in benchmark tests. On the GSM8K dataset, for instance, it achieved a 27.6× speedup over baseline models in 8-shot configurations at a generation length of 1024 tokens, with an accuracy of 76.0%. On the MATH benchmark, a 6.5× speedup was achieved with an accuracy of around 39.3%. The HumanEval benchmark saw up to a 3.2× acceleration with accuracy maintained at 54.3%, while on MBPP, the system achieved a 7.8× speedup at a generation length of 512 tokens. Across all tasks and models, accuracy remained within 1–2 points of the baseline, showing that Fast-dLLM’s acceleration does not significantly degrade output quality.

    The research team effectively addressed the core bottlenecks in diffusion-based LLMs by introducing a novel caching strategy and a confidence-driven decoding mechanism. By addressing inference inefficiency and enhancing decoding quality, Fast-dLLM demonstrates how diffusion LLMs can approach or even surpass autoregressive models in speed while maintaining high accuracy, making them viable for deployment in real-world language generation applications.


    Check out the Paper and Project Page . All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMs appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleDevSecOps with Agentic AI: Autonomous Security Testing in CI/CD Pipelines
    Next Article Off-Policy Reinforcement Learning RL with KL Divergence Yields Superior Reasoning in Large Language Models

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 19, 2025
    Machine Learning

    Language Models Improve When Pretraining Data Matches Target Tasks

    July 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Dynatrace Live Debugger, Mistral Agents API, and more – SD Times Daily Digest

    Tech & Work

    Cisco rolls out AI agents to automate network tasks at ‘machine speed’ – with IT still in control

    News & Updates

    Microsoft celebrates 50th anniversary with a new Xbox Dynamic Background and more

    News & Updates

    Distribution Release: 4MLinux 48.0

    News & Updates

    Highlights

    Apache Under Attack: Critical RCE Flaws in Tomcat & Camel Spark Thousands of Exploit Attempts

    July 3, 2025

    Apache Under Attack: Critical RCE Flaws in Tomcat & Camel Spark Thousands of Exploit Attempts

    In a recent deep-dive analysis, Palo Alto Networks’ Unit 42 revealed disturbing insights into a surge of cyberattacks targeting critical vulnerabilities in Apache Tomcat and Apache Camel. These flaws, …
    Read more

    Published Date:
    Jul 04, 2025 (3 hours, 15 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-34067

    CVE-2025-29891

    CVE-2025-24813

    CVE-2025-27636

    CVE-2025-4577 – Smash Balloon Social Post Feed – WordPress Stored Cross-Site Scripting Vulnerability

    June 10, 2025

    Elden Ring Nightreign devs promise duos mode and “enhanced” boss fights along with DLC, but this core feature is still missing

    June 3, 2025

    Best early Prime Day deals 2025: 30+ sales on tech products live now

    June 17, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.