Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Why Non-Native Content Designers Improve Global UX

      July 18, 2025

      DevOps won’t scale without platform engineering and here’s why your teams are still stuck

      July 18, 2025

      This week in AI dev tools: Slack’s enterprise search, Claude Code’s analytics dashboard, and more (July 18, 2025)

      July 18, 2025

      Report: 71% of tech leaders won’t hire devs without AI skills

      July 17, 2025

      Could OpenAI’s rumored browser be a Chrome-killer? Here’s what I’m expecting

      July 18, 2025

      My favorite lens and screen-cleaning kit keeps my tech spotless, and it only costs $8

      July 18, 2025

      AI’s biggest impact on your workforce is still to come – 3 ways to avoid getting left behind

      July 18, 2025

      Remedy offers update on ‘FBC: Firebreak,’ details coming improvements — “We’ve seen many players come into the game and leave within the first hour.”

      July 18, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 18, 2025
      Recent

      The details of TC39’s last meeting

      July 18, 2025

      Online Examination System using PHP and MySQL

      July 18, 2025

      A tricky, educational quiz: it’s about time..

      July 18, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025
      Recent

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025

      7 Best Free and Open Source Linux FTP Servers

      July 18, 2025

      Best Free and Open Source Alternatives to Autodesk FBX Review

      July 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning

    Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning

    June 1, 2025

    Large Reasoning Models (LRMs), trained from LLMs using reinforcement learning (RL), demonstrated great performance in complex reasoning tasks, including mathematics, STEM, and coding. However, existing LRMs face challenges in completing various puzzle tasks that require purely logical reasoning skills, which are easy and obvious for humans. Current methods targeting puzzles focus only on designing benchmarks for evaluation, lacking the training methods and resources for modern LLMs to tackle this challenge. Current puzzle datasets lack diversity and scalability, covering limited puzzle types with little control over generation or difficulty. Moreover, due to the success of the “LLM+RLVR” paradigm, it has become crucial to obtain large, diverse, and challenging sets of verifiable puzzle prompts for training agents.

    Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving models’ reasoning capabilities, removing the need for reward models by directly assigning rewards based on objectively verifiable answers. Puzzles are particularly well-suited for RLVR. However, most prior RLVR research has overlooked the puzzles’ potential for delivering effective reward signals. In puzzle reasoning of LLMs, existing benchmarks evaluate different types of reasoning, including abstract, deductive, and compositional reasoning. Few benchmarks support scalable generation and difficulty control but lack puzzle diversity. Moreover, the improvement of LLMs’ puzzle-solving abilities mainly falls into two categories: tool integration and RLVR.

    Researchers from ByteDance Seed, Fudan University, Tsinghua University, Nanjing University, and Shanghai Jiao Tong University have proposed Enigmata, the first comprehensive toolkit designed for improving LLMs with puzzle reasoning skills. It contains 36 tasks across seven categories, each featuring a generator that produces unlimited examples with controllable difficulty and a rule-based verifier for automatic evaluation. The researchers further developed Enigmata-Eval as a rigorous benchmark and created optimized multi-task RLVR strategies. Puzzle data from Enigmata enhances SoTA performance on advanced math and STEM reasoning tasks like AIME, BeyondAIME, and GPQA when trained on larger models like Seed1.5-Thinking. This shows the generalization benefits of Enigmata.

    The Enigmata-Data comprises 36 puzzle tasks organized into 7 primary categories, including Crypto, Arithmetic, Logic, Grid, Graph, Search, and Sequential Puzzle, making it the only dataset having multiple task categories with scalability, automatic verification, and public availability. The data construction follows a three-phase pipeline: Tasks Collection and Design, Auto-Generator and Verifier Development, and Sliding Difficulty Control. Moreover, the Enigmata-Eval is developed by systematically sampling from the broader dataset, aiming to extract 50 instances per difficulty level for each task. The final evaluation set contains 4,758 puzzle instances rather than the theoretical maximum of 5,400, due to inherent constraints, where some tasks generate fewer instances per difficulty level.

    The proposed model outperforms most public models on Enigmata-Eval with 32B parameters, showing the effectiveness of the dataset and training recipe. The model stands out on the challenging ARC-AGI benchmark, surpassing strong reasoning models such as Gemini 2.5 Pro, o3-mini, and o1. The Qwen2.5-32B-Enigmata shows outstanding performance in structured reasoning categories, outperforming in Crypto, Arithmetic, and Logic tasks, suggesting effective development of rule-based reasoning capabilities. The model shows competitive performance in search tasks that require strategic exploration and planning capabilities. Moreover, Crypto and Arithmetic tasks tend to provide the highest accuracy, while spatial and sequential tasks remain more difficult.

    In this paper, researchers introduced Enigmata, a comprehensive suite for equipping LLMs with advanced puzzle reasoning that integrates seamlessly with RL using verifiable rule-based rewards. The trained Enigmata-Model shows superior performance and robust generalization skills through RLVR training. Experiments reveal that when applied to larger models such as Seed1.5-Thinking (20B/200B parameters), synthetic puzzle data brings additional benefits in other domains, including mathematics and STEM reasoning over state-of-the-art models. Enigmata provides a solid foundation for the research community to advance reasoning model development, offering a unified framework that effectively bridges logical puzzle-solving with broader reasoning capabilities in LLMs.


    Check out the Paper, GitHub Page and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Legal Accountability of AI-Generated Deepfakes in Election Misinformation
    Next Article Color Theory Essentials

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 18, 2025
    Machine Learning

    Language Models Improve When Pretraining Data Matches Target Tasks

    July 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Mark Zuckerberg announces Meta Superintelligence Labs — with a battalion of AI gurus poached from OpenAI, Google, and DeepMind to try and secure an AGI win

    News & Updates

    CVE-2025-7066 – Jirafeau MIME Type Bypass Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-5365 – Campcodes Online Hospital Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Top Cisco Authorized Reseller in India

    Web Development

    Highlights

    News & Updates

    Windows 11 is set to gain big lock screen improvements this year — here’s what to expect, and when

    July 7, 2025

    Customizable widgets, dynamic widgets, battery percentage indicators, and gamepad support are all coming soon to…

    CVE-2024-40462 – Ocuco Innovation Local Privilege Escalation Vulnerability

    May 22, 2025

    CVE-2025-32821 – SMA100 Command Injection Vulnerability

    May 7, 2025

    CVE-2025-4055 – WordPress Multiple Post Type Order Stored Cross-Site Scripting

    May 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.