Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The state of DevOps and AI: Not just hype

      September 1, 2025

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      Prompting Is A Design Act: How To Brief, Guide And Iterate With AI

      August 29, 2025

      Look out, Meta Ray-Bans! These AI glasses just raised over $1M in pre-orders in 3 days

      September 2, 2025

      Samsung ‘Galaxy Glasses’ powered by Android XR are reportedly on track to be unveiled this month

      September 2, 2025

      The M4 iPad Pro is discounted $100 as a last-minute Labor Day deal

      September 2, 2025

      Distribution Release: Linux From Scratch 12.4

      September 1, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025
      Recent

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025

      August report 2025

      September 2, 2025

      Fake News Detection using Python Machine Learning (ML)

      September 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025
      Recent

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025

      Download Transcribe! for Windows

      September 1, 2025

      Microsoft Fixes CertificateServicesClient (CertEnroll) Error in Windows 11

      September 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning

    Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning

    June 1, 2025

    Large Reasoning Models (LRMs), trained from LLMs using reinforcement learning (RL), demonstrated great performance in complex reasoning tasks, including mathematics, STEM, and coding. However, existing LRMs face challenges in completing various puzzle tasks that require purely logical reasoning skills, which are easy and obvious for humans. Current methods targeting puzzles focus only on designing benchmarks for evaluation, lacking the training methods and resources for modern LLMs to tackle this challenge. Current puzzle datasets lack diversity and scalability, covering limited puzzle types with little control over generation or difficulty. Moreover, due to the success of the “LLM+RLVR” paradigm, it has become crucial to obtain large, diverse, and challenging sets of verifiable puzzle prompts for training agents.

    Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving models’ reasoning capabilities, removing the need for reward models by directly assigning rewards based on objectively verifiable answers. Puzzles are particularly well-suited for RLVR. However, most prior RLVR research has overlooked the puzzles’ potential for delivering effective reward signals. In puzzle reasoning of LLMs, existing benchmarks evaluate different types of reasoning, including abstract, deductive, and compositional reasoning. Few benchmarks support scalable generation and difficulty control but lack puzzle diversity. Moreover, the improvement of LLMs’ puzzle-solving abilities mainly falls into two categories: tool integration and RLVR.

    Researchers from ByteDance Seed, Fudan University, Tsinghua University, Nanjing University, and Shanghai Jiao Tong University have proposed Enigmata, the first comprehensive toolkit designed for improving LLMs with puzzle reasoning skills. It contains 36 tasks across seven categories, each featuring a generator that produces unlimited examples with controllable difficulty and a rule-based verifier for automatic evaluation. The researchers further developed Enigmata-Eval as a rigorous benchmark and created optimized multi-task RLVR strategies. Puzzle data from Enigmata enhances SoTA performance on advanced math and STEM reasoning tasks like AIME, BeyondAIME, and GPQA when trained on larger models like Seed1.5-Thinking. This shows the generalization benefits of Enigmata.

    The Enigmata-Data comprises 36 puzzle tasks organized into 7 primary categories, including Crypto, Arithmetic, Logic, Grid, Graph, Search, and Sequential Puzzle, making it the only dataset having multiple task categories with scalability, automatic verification, and public availability. The data construction follows a three-phase pipeline: Tasks Collection and Design, Auto-Generator and Verifier Development, and Sliding Difficulty Control. Moreover, the Enigmata-Eval is developed by systematically sampling from the broader dataset, aiming to extract 50 instances per difficulty level for each task. The final evaluation set contains 4,758 puzzle instances rather than the theoretical maximum of 5,400, due to inherent constraints, where some tasks generate fewer instances per difficulty level.

    The proposed model outperforms most public models on Enigmata-Eval with 32B parameters, showing the effectiveness of the dataset and training recipe. The model stands out on the challenging ARC-AGI benchmark, surpassing strong reasoning models such as Gemini 2.5 Pro, o3-mini, and o1. The Qwen2.5-32B-Enigmata shows outstanding performance in structured reasoning categories, outperforming in Crypto, Arithmetic, and Logic tasks, suggesting effective development of rule-based reasoning capabilities. The model shows competitive performance in search tasks that require strategic exploration and planning capabilities. Moreover, Crypto and Arithmetic tasks tend to provide the highest accuracy, while spatial and sequential tasks remain more difficult.

    In this paper, researchers introduced Enigmata, a comprehensive suite for equipping LLMs with advanced puzzle reasoning that integrates seamlessly with RL using verifiable rule-based rewards. The trained Enigmata-Model shows superior performance and robust generalization skills through RLVR training. Experiments reveal that when applied to larger models such as Seed1.5-Thinking (20B/200B parameters), synthetic puzzle data brings additional benefits in other domains, including mathematics and STEM reasoning over state-of-the-art models. Enigmata provides a solid foundation for the research community to advance reasoning model development, offering a unified framework that effectively bridges logical puzzle-solving with broader reasoning capabilities in LLMs.


    Check out the Paper, GitHub Page and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Enigmata’s Multi-Stage and Mix-Training Reinforcement Learning Recipe Drives Breakthrough Performance in LLM Puzzle Reasoning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Legal Accountability of AI-Generated Deepfakes in Election Misinformation
    Next Article Color Theory Essentials

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 2, 2025
    Machine Learning

    Introducing auto scaling on Amazon SageMaker HyperPod

    August 30, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-6856 – HDF5 Use After Free Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Leadership, Trust, and Cyber Hygiene: NCSC’s Guide to Security Culture in Action

    Security

    CVE-2025-4967 – Esri Portal for ArcGIS SSRF Bypass

    Common Vulnerabilities and Exposures (CVEs)

    Unlocking Business Success with Databricks One

    Development

    Highlights

    Linux

    Debian sostiene End of 10: un futuro libero oltre Windows 10

    May 14, 2025

    Microsoft ha annunciato ufficialmente la data di cessazione del supporto per Windows 10: il 14…

    Microsoft’s cybersecurity crackdown is here — A response to Beijing-linked breaches

    August 24, 2025

    Memorado lets you memorize anything

    April 10, 2025

    CVE-2025-6920 – ai-inference-server API Key Validation Bypass Vulnerability

    July 1, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.