Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 1, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 1, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 1, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 1, 2025

      7 MagSafe accessories that I recommend every iPhone user should have

      June 1, 2025

      I replaced my Kindle with an iPad Mini as my ebook reader – 8 reasons why I don’t regret it

      June 1, 2025

      Windows 11 version 25H2: Everything you need to know about Microsoft’s next OS release

      May 31, 2025

      Elden Ring Nightreign already has a duos Seamless Co-op mod from the creator of the beloved original, and it’ll be “expanded on in the future”

      May 31, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Student Record Android App using SQLite

      June 1, 2025
      Recent

      Student Record Android App using SQLite

      June 1, 2025

      When Array uses less memory than Uint8Array (in V8)

      June 1, 2025

      Laravel 12 Starter Kits: Definite Guide Which to Choose

      June 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Photobooth is photobooth software for the Raspberry Pi and PC

      June 1, 2025
      Recent

      Photobooth is photobooth software for the Raspberry Pi and PC

      June 1, 2025

      Le notizie minori del mondo GNU/Linux e dintorni della settimana nr 22/2025

      June 1, 2025

      Rilasciata PorteuX 2.1: Novità e Approfondimenti sulla Distribuzione GNU/Linux Portatile Basata su Slackware

      June 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation

    National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation

    May 29, 2025

    In recent months, there has been growing interest in applying diffusion models—originally designed for continuous data, such as images—to natural language processing tasks. This has led to the development of Discrete Diffusion Language Models (DLMs), which treat text generation as a denoising process. Unlike traditional autoregressive models, DLMs enable parallel decoding and provide better control over structure, offering advantages such as flexible initialization of entire sequences, explicit control over output format, and improved infilling through bidirectional attention. Furthermore, their non-sequential nature opens the door to faster generation. Despite these benefits, most current multimodal large language models (MLLMs)—such as LLaMA, Qwen-VL, and InternVL—still rely solely on autoregressive methods.

    Work in diffusion-based language models has explored both continuous and discrete diffusion spaces. Continuous approaches, such as DiffuSeq and SED, use embedding or relaxed categorical spaces for smoother generation. In contrast, discrete models like SDDM and RDM tailor the diffusion process to linguistic structures. Training techniques vary, but commonly use masked language modeling losses or entropy-based score matching. Some hybrid models, such as AR-Diffusion and SSD-LM, combine autoregressive and diffusion strategies to leverage the strengths of both approaches. Meanwhile, open-source MLLMs such as LLaVA and InternVL have advanced through visual instruction tuning and joint pretraining, yet still follow an autoregressive generation scheme. 

    Researchers at the National University of Singapore present Dimple, the first Discrete DMLLM, which integrates a vision encoder with a discrete diffusion-based language model. To overcome the instability and performance issues of purely diffusion-based training, they introduce a two-phase training method—Autoregressive-then-Diffusion—combining initial autoregressive alignment with subsequent diffusion-based masked language modeling. Dimple-7B surpasses LLaVA-NEXT by 3.9% on benchmarks. The team also introduces Confident Decoding for dynamic token generation and explores Structure Priors for precise control over output. These innovations significantly improve inference efficiency, generation flexibility, and structural controllability without sacrificing performance. 

    Dimple is a Discrete Diffusion Multimodal LLM that integrates a vision encoder with a diffusion-based language model. To address inefficiencies in diffusion training, such as sparse supervision and limited generation coverage, the model is trained in two phases: first with autoregressive training using a causal attention mask for vision-language alignment, then with diffusion training to restore generation capabilities. During inference, a dynamic “Confident Decoding” strategy adapts token updates based on prediction confidence. Despite using significantly fewer training samples, Dimple exhibits competitive performance on multiple benchmarks, outperforming similar-scale autoregressive models, although it trails behind larger-scale state-of-the-art systems. 

    The experiments evaluate Dimple, a DMLLM, against autoregressive models on instruction-following tasks. Dimple, trained with a hybrid strategy that combines autoregressive and diffusion tuning, exhibits strong performance, surpassing models with similar training data on most benchmarks. Although it lags behind models trained on much larger datasets, Dimple benefits from a stronger base language model. Ablation studies reveal that combining autoregressive and diffusion tuning mitigates issues like length bias and improves consistency. Prefilling further boosts inference speed significantly, with only minor performance drops, making the model both efficient and competitive in multimodal understanding tasks. 

    In conclusion, Dimple, the first DMLLM, is designed to overcome the limitations of purely discrete diffusion training, such as instability and length bias. Dimple employs a hybrid training approach that starts with autoregressive learning, followed by diffusion tuning, yielding the Dimple-7B model, which outperforms LLaVA-NEXT by 3.9%. A decoding strategy, confident decoding, significantly reduces inference steps, while prefilling improves speed with minimal performance trade-offs. Dimple also enables structured and controllable outputs through structure priors, offering fine-grained control over format and length capabilities that autoregressive models struggle to provide. 


    Check out the Paper, Model on Hugging Face and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThis AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency
    Next Article The Future of AI-Generated Design: From Architecture to Advertising🎨

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 1, 2025
    Machine Learning

    BOND 2025 AI Trends Report Shows AI Ecosystem Growing Faster than Ever with Explosive User and Developer Adoption

    June 1, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    OpenAI Blocks Iranian Influence Operation Using ChatGPT for U.S. Election Propaganda

    Development

    CVE-2025-2605 – Honeywell MB-Secure OS Command Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    UX in Universal Design Series: Key Principles for Physical Disabilities in Health Systems – 1

    Development

    Benchmarking Node.js Frameworks: selecting your framework for 2025!

    Development

    Highlights

    Development

    Perficient Achieves AWS Glue Service Delivery Designation

    March 19, 2025

    Perficient has earned the AWS Glue Service Delivery Designation, demonstrating our deep technical expertise and…

    通过独特的可查询加密技术,MongoDB为数据安全提供覆盖全生命周期的保护

    November 5, 2024

    Key ISO 20022 Compliance & Security Insights for Banking Sector 

    November 21, 2024

    How to Create a Meme Generator Using HTML Canvas

    November 19, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.