Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      Prompting Is A Design Act: How To Brief, Guide And Iterate With AI

      August 29, 2025

      Best React.js Development Services in 2025: Features, Benefits & What to Look For

      August 29, 2025

      August 2025: AI updates from the past month

      August 29, 2025

      This 3-in-1 charger has a retractable superpower that’s a must for travel

      August 31, 2025

      How a legacy hardware company reinvented itself in the AI age

      August 31, 2025

      The 13+ best Walmart Labor Day deals 2025: Sales on Apple, Samsung, LG, and more

      August 31, 2025

      You can save up to $700 on my favorite Bluetti power stations for Labor Day

      August 31, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Call for Speakers – JS Conf Armenia 2025

      August 30, 2025
      Recent

      Call for Speakers – JS Conf Armenia 2025

      August 30, 2025

      Streamlining Application Automation with Laravel’s Task Scheduler

      August 30, 2025

      A Fluent Path Builder for PHP and Laravel

      August 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 KB5064081 24H2 adds taskbar clock, direct download links for .msu offline installer

      August 30, 2025
      Recent

      Windows 11 KB5064081 24H2 adds taskbar clock, direct download links for .msu offline installer

      August 30, 2025

      My Family Cinema not Working? 12 Quick Fixes

      August 30, 2025

      Super-linter – collection of linters and code analyzers

      August 30, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Can LLMs Really Judge with Reasoning? Microsoft and Tsinghua Researchers Introduce Reward Reasoning Models to Dynamically Scale Test-Time Compute for Better Alignment

    Can LLMs Really Judge with Reasoning? Microsoft and Tsinghua Researchers Introduce Reward Reasoning Models to Dynamically Scale Test-Time Compute for Better Alignment

    May 27, 2025

    Reinforcement learning (RL) has emerged as a fundamental approach in LLM post-training, utilizing supervision signals from human feedback (RLHF) or verifiable rewards (RLVR). While RLVR shows promise in mathematical reasoning, it faces significant constraints due to dependence on training queries with verifiable answers. This requirement limits applications to large-scale training on general-domain queries where verification proves intractable. Further, current reward models, categorized into scalar and generative types, cannot effectively scale test-time compute for reward estimation. Existing approaches apply uniform computational resources across all inputs, lacking adaptability to allocate additional resources to challenging queries requiring nuanced analysis.

    Formulation strategies and scoring schemes characterize reward models. Numeric approaches assign scalar scores to query-response pairs, while generative methods produce natural language feedback. Scoring follows absolute evaluation of individual pairs or discriminative comparison of candidate responses. Generative reward models, aligned with the LLM-as-a-Judge paradigm, offer interpretable feedback but face reliability concerns due to biased judgments. Inference-time scaling methods dynamically adjust computational resources, including parallel strategies like multi-sampling and horizon-based scaling for extended reasoning traces. However, they lack systematic adaptation to input complexity, limiting their effectiveness across diverse query types.

    Researchers from Microsoft Research, Tsinghua University, and Peking University have proposed Reward Reasoning Models (RRMs), which perform explicit reasoning before producing final rewards. This reasoning phase allows RRMs to adaptively allocate additional computational resources when evaluating responses to complex tasks. RRMs introduce a dimension for enhancing reward modeling by scaling test-time compute while maintaining general applicability across diverse evaluation scenarios. Through chain-of-thought reasoning, RRMs utilize additional test-time compute for complex queries where appropriate rewards are not immediately apparent. This encourages RRMs to self-evolve reward reasoning capabilities without explicit reasoning traces as training data.

    RRMs utilize the Qwen2 model with a Transformer-decoder backbone, formulating reward modeling as text completion where RRMs autoregressively generate thinking processes followed by final judgments. Each input contains a query and two responses to determine preference without allowing ties. Researchers use the RewardBench repository to guide systematic analysis across evaluation criteria, including instruction fidelity, helpfulness, accuracy, harmlessness, and detail level. RRMs support multi-response evaluation through ELO rating systems and knockout tournaments, both combinable with majority voting for enhanced test-time compute utilization. This samples RRMs multiple times for pairwise comparisons, performing majority voting to obtain robust comparison results.

    Evaluation results show that RRMs achieve competitive performance against strong baselines on RewardBench and PandaLM Test benchmarks, with RRM-32B attaining 98.6% accuracy in reasoning categories. Comparing with DirectJudge models trained on identical data reveals substantial performance gaps, indicating RRMs effectively use test-time compute for complex queries. In reward-guided best-of-N inference, RRMs surpass all baseline models without additional test-time compute, with majority voting providing substantial improvements across evaluated subsets. Post-training experiments show steady downstream performance improvements on MMLU-Pro and GPQA. Scaling experiments across 7B, 14B, and 32B models confirm that longer thinking horizons consistently improve accuracy.

    In conclusion, researchers introduced RRMs to perform explicit reasoning processes before reward assignment to address computational inflexibility in existing reward modeling approaches. Rule-based-reward RL enables RRMs to develop complex reasoning capabilities without requiring explicit reasoning traces as supervision. RRMs efficiently utilize test-time compute through parallel and sequential scaling approaches. The effectiveness of RRMs in practical applications, including reward-guided best-of-N inference and post-training feedback, demonstrates their potential as strong alternatives to traditional scalar reward models in alignment techniques.


    Check out the Paper and Models on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Can LLMs Really Judge with Reasoning? Microsoft and Tsinghua Researchers Introduce Reward Reasoning Models to Dynamically Scale Test-Time Compute for Better Alignment appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleResearchers at UT Austin Introduce Panda: A Foundation Model for Nonlinear Dynamics Pretrained on 20,000 Chaotic ODE Discovered via Evolutionary Search
    Next Article AI for Sustainability: How Smart Technology Is Powering the Green Revolution🌱

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 31, 2025
    Machine Learning

    Introducing auto scaling on Amazon SageMaker HyperPod

    August 30, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Despite Microsoft’s multi-billion-dollar OpenAI investment, these viral ChatGPT 4o Ghibli memes are another example of just how far behind Copilot is

    News & Updates

    CVE-2024-53591 – Seclore Brute Force Authentication Bypass

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-25032 – IBM Cognos Analytics Memory Exhaustion Denial of Service

    Common Vulnerabilities and Exposures (CVEs)

    ChatGPT Plus is free for students now – how to grab this deal before finals

    News & Updates

    Highlights

    Top Smart Car Accessories in 2025: Enhancing Connectivity and Safety on the Road

    June 17, 2025

    Post Content Source: Read More 

    CVE-2024-52894 – IBM Db2 Denial of Service

    July 29, 2025
    Universal Design in Pharmacies – WCAG  – Perceivable

    Universal Design in Pharmacies – WCAG – Perceivable

    April 10, 2025

    Palworld developers at Pocketpair showed off gliding six months prior to Nintendo’s original patent application

    May 15, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.