Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces GRIT: A Method for Teaching MLLMs to Reason with Images by Interleaving Text and Visual Grounding

    This AI Paper Introduces GRIT: A Method for Teaching MLLMs to Reason with Images by Interleaving Text and Visual Grounding

    May 25, 2025

    The core idea of Multimodal Large Language Models (MLLMs) is to create models that can combine the richness of visual content with the logic of language. However, despite advances in this field, many models struggle to connect the two domains effectively, leading to limited performance in complex reasoning tasks that involve visual components.

    A major challenge in building such models is their limited ability to combine visual understanding with logical thinking. Current systems often produce textual outputs that explain reasoning but fail to reference the specific parts of an image they rely on. This creates a gap where models may arrive at an answer without clearly showing how the visual evidence contributed to their decision. It’s also difficult to ensure that models generate visual reasoning steps directly connecting to their answers. The fundamental problem lies in how to naturally train models to interleave text and image reasoning without needing large datasets annotated with visual references, which are scarce and expensive to produce.

    Existing methods try to address this by using reinforcement learning or prompting strategies. Some systems generate bounding box coordinates as answers, while others produce step-by-step textual reasoning chains. However, these approaches have limitations. Models that only produce bounding boxes lack explanation, while those generating only text risk ignoring visual evidence. Previous methods often separate visual grounding and reasoning, making it hard for models to explain why a particular visual element leads to a certain conclusion. While some models use dense supervision data or additional tools, they generally require heavy annotation and do not scale well. This makes it difficult for developers to create models that can explain their reasoning transparently and handle various visual tasks with minimal data.

    Researchers from UC Santa Cruz and eBay introduced a new method called Grounded Reasoning with Images and Text (GRIT) that allows MLLMs like Qwen 2.5-VL and InternVL 3 to generate reasoning chains that mix natural language with explicit bounding box coordinates pointing to relevant image regions. This unified approach enables models to reason about and visually ground their answers without requiring dense annotations or labeled reasoning chains. GRIT also uses a lightweight reinforcement learning algorithm called GRPO-GR, which optimizes both the accuracy of the final answer and the structure of the reasoning, encouraging models to include specific tokens like <think> and <rethink>, as well as bounding box formats. This design eliminates the need for costly annotated data while ensuring that models learn to reference visual content meaningfully within their logical steps.

    The methodology in GRIT focuses on generating outputs that combine textual reasoning and visual grounding seamlessly. Instead of requiring models to process cropped images or additional visual data after generating bounding boxes, GRIT teaches models to use their internal understanding of the image. Bounding boxes are generated during the reasoning process, and models learn to reflect on these coordinates within their logical reasoning. The reinforcement learning framework rewards the correct use of bounding box formats and reasoning structure, and it guides models to produce coherent, grounded reasoning chains. GRIT demonstrates remarkable data efficiency by using only 20 image-question-answer triplets sourced from Visual Spatial Reasoning and TallyQA datasets. The model training was conducted on NVIDIA A100 GPUs, with optimization techniques like AdamW and a cosine scheduler applied over 200 training steps, which shows the method’s scalability despite limited data.

    Performance evaluations revealed that GRIT-trained models outperform several baselines in reasoning and grounding accuracy. For example, Qwen 2.5-VL trained with GRIT achieved 72.9% answer accuracy on Visual Spatial Reasoning, 47.8% on TallyQA, and 62.8% on GQA datasets. It also reached a grounding IoU score of 0.325 on VSR and 0.447 on TallyQA. In contrast, baseline models like Direct Query or Chain-of-Thought often performed significantly lower, showing limited ability to unify reasoning with visual grounding. GRIT models demonstrated a strong correlation between visual regions and textual reasoning, producing outputs that reflected a meaningful connection between image evidence and logical thought. GRIT also showed improvements on out-of-domain benchmarks, though gains were more pronounced on in-domain data, highlighting the importance of training data diversity for broader generalization.

    In conclusion, the research addressed the problem of disconnected reasoning and visual grounding in MLLMs by introducing GRIT. The method allows models to reason with images through a simple, efficient approach that requires minimal data. GRIT successfully teaches MLLMs to combine visual evidence with logical reasoning in a unified output, achieving strong performance across multiple benchmarks and demonstrating a promising step toward more interpretable AI systems.


    Check out the Paper, Project, and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper Introduces GRIT: A Method for Teaching MLLMs to Reason with Images by Interleaving Text and Visual Grounding appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAutomated Accessibility Testing: Tools, CI/CD Integration, and Business Benefits
    Next Article Step-by-Step Guide to Creating Synthetic Data Using the Synthetic Data Vault (SDV)

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Secure File Uploads Prevent Code Execution and Inclusion

    Development

    Unpatched Wazuh servers targeted by Mirai botnets (CVE-2025-24016)

    Security

    Community News: Latest PECL Releases (06.24.2025)

    Development

    Europol targets Kremlin-backed cybercrime gang NoName057(16)

    Development

    Highlights

    Buy the iPhone 16 or wait for iPhone 17? Here’s how I help friends and family decide

    August 14, 2025

    Here’s what to know before the new iPhones arrive in September to help you make…

    Microsoft Patch Tuesday June 2025: One Zero-Day, Nine High-risk Flaws Fixed

    June 11, 2025

    This Linux distro makes Slackware easier than ever

    August 4, 2025

    This one small feature makes this travel charger my favorite for business trips

    September 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.