Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Slack’s AI search now works across an organization’s entire knowledge base

      July 17, 2025

      In-House vs Outsourcing for React.js Development: Understand What Is Best for Your Enterprise

      July 17, 2025

      Tiny Screens, Big Impact: The Forgotten Art Of Developing Web Apps For Feature Phones

      July 16, 2025

      Kong AI Gateway 3.11 introduces new method for reducing token costs

      July 16, 2025

      Got ChatGPT Plus? You can record and summarize meetings on a Mac now – here’s how

      July 17, 2025

      I put this buzzworthy 2-in-1 robot vacuum to work in my house – here’s how it fared

      July 17, 2025

      AI agents will change work and society in internet-sized ways, says AWS VP

      July 17, 2025

      This slick gadget is like a Swiss Army Knife for my keys (and fully trackable)

      July 17, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 17, 2025
      Recent

      The details of TC39’s last meeting

      July 17, 2025

      Notes Android App Using SQLite

      July 17, 2025

      How to Get Security Patches for Legacy Unsupported Node.js Versions

      July 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft says it won’t change Windows 11’s system tray design after users feedback

      July 17, 2025
      Recent

      Microsoft says it won’t change Windows 11’s system tray design after users feedback

      July 17, 2025

      How Rust’s Debut in the Linux Kernel is Shoring Up System Stability

      July 17, 2025

      Microsoft is on track to become the second $4 trillion company by market cap, following NVIDIA — and mass layoffs

      July 17, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»NVIDIA Releases Llama Nemotron Nano 4B: An Efficient Open Reasoning Model Optimized for Edge AI and Scientific Tasks

    NVIDIA Releases Llama Nemotron Nano 4B: An Efficient Open Reasoning Model Optimized for Edge AI and Scientific Tasks

    May 25, 2025

    NVIDIA has released Llama Nemotron Nano 4B, an open-source reasoning model designed to deliver strong performance and efficiency across scientific tasks, programming, symbolic math, function calling, and instruction following—while being compact enough for edge deployment. With just 4 billion parameters, it achieves higher accuracy and up to 50% greater throughput than comparable open models with up to 8 billion parameters, according to internal benchmarks.

    The model is positioned as a practical foundation for deploying language-based AI agents in resource-constrained environments. By focusing on inference efficiency, Llama Nemotron Nano 4B addresses a growing demand for compact models capable of supporting hybrid reasoning and instruction-following tasks outside traditional cloud settings.

    Model Architecture and Training Stack

    Nemotron Nano 4B builds upon the Llama 3.1 architecture and shares lineage with NVIDIA’s earlier “Minitron” family. The architecture follows a dense, decoder-only transformer design. The model has been optimized for performance in reasoning-intensive workloads while maintaining a lightweight parameter count.

    The post-training stack for the model includes multi-stage supervised fine-tuning on curated datasets for mathematics, coding, reasoning tasks, and function calling. In addition to traditional supervised learning, Nemotron Nano 4B has undergone reinforcement learning optimization using Reward-aware Preference Optimization (RPO), a method intended to enhance the model’s utility in chat-based and instruction-following environments.

    This combination of instruction tuning and reward modeling helps align the model’s outputs more closely with user intent, particularly in multi-turn reasoning scenarios. The training approach reflects NVIDIA’s emphasis on aligning smaller models to practical usage tasks that traditionally require significantly larger parameter sizes.

    Performance Benchmarks

    Despite its compact footprint, Nemotron Nano 4B exhibits robust performance in both single-turn and multi-turn reasoning tasks. According to NVIDIA, it provides 50% higher inference throughput compared to similar open-weight models within the 8B parameter range. The model supports a context window of up to 128,000 tokens, which is particularly useful for tasks involving long documents, nested function calls, or multi-hop reasoning chains.

    While NVIDIA has not disclosed full benchmark tables in the Hugging Face documentation, the model reportedly outperforms other open alternatives in benchmarks across math, code generation, and function calling precision. Its throughput advantage suggests it can serve as a viable default for developers targeting efficient inference pipelines with moderately complex workloads.

    Edge-Ready Deployment

    One of the core differentiators of Nemotron Nano 4B is its focus on edge deployment. The model has been explicitly tested and optimized to run efficiently on NVIDIA Jetson platforms and NVIDIA RTX GPUs. This enables real-time reasoning capabilities on low-power embedded devices, including robotics systems, autonomous edge agents, or local developer workstations.

    For enterprises and research teams concerned with privacy and deployment control, the ability to run advanced reasoning models locally—without relying on cloud inference APIs—can provide both cost savings and greater flexibility.

    Licensing and Access

    The model is released under the NVIDIA Open Model License, which permits commercial usage. It is available through Hugging Face at huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1, with all relevant model weights, configuration files, and tokenizer artifacts openly accessible. The license structure aligns with NVIDIA’s broader strategy of supporting developer ecosystems around its open models.

    Conclusion

    Nemotron Nano 4B represents NVIDIA’s continued investment in bringing scalable, practical AI models to a broader development audience—especially those targeting edge or cost-sensitive deployment scenarios. While the field continues to see rapid progress in ultra-large models, compact and efficient models like Nemotron Nano 4B provide a counterbalance, enabling deployment flexibility without compromising too heavily on performance.


    Check out the Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post NVIDIA Releases Llama Nemotron Nano 4B: An Efficient Open Reasoning Model Optimized for Edge AI and Scientific Tasks appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleStep-by-Step Guide to Creating Synthetic Data Using the Synthetic Data Vault (SDV)
    Next Article A Coding Implementation to Build an AI Agent with Live Python Execution and Automated Validation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 17, 2025
    Machine Learning

    Apple Intelligence Foundation Language Models Tech Report 2025

    July 17, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Rilasciato Calibre 8.3: Migliorata la Velocità di Apertura degli EPUB e Nuove Opzioni di Personalizzazione

    Rilasciato Calibre 8.3: Migliorata la Velocità di Apertura degli EPUB e Nuove Opzioni di Personalizzazione

    Linux

    CVE-2025-5787 – TOTOLINK X15 HTTP POST Request Handler Buffer Overflow Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Broadcom Backtracks: Reinstates Lower VMware Core Licensing After Backlash

    Security

    CVE-2025-32978 – Quest KACE SMA Unauthenticated License Replacement

    Security

    Highlights

    NVIDIA confirms final driver support for GTX 900 and 1000 series cards

    July 1, 2025

    NVIDIA is phasing out support for some of its most iconic GPUs. The company has…

    CVE-2025-32011 – KUNBUS PiCtory Authentication Bypass Vulnerability

    May 1, 2025

    CVE-2025-28099 – Opencms Arbitrary File Read Vulnerability

    April 21, 2025

    July 2025 Patch Tuesday: One Publicly Disclosed Zero-Day and 14 Critical Vulnerabilities Among 137 CVEs

    July 9, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.