Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Why Non-Native Content Designers Improve Global UX

      July 18, 2025

      DevOps won’t scale without platform engineering and here’s why your teams are still stuck

      July 18, 2025

      This week in AI dev tools: Slack’s enterprise search, Claude Code’s analytics dashboard, and more (July 18, 2025)

      July 18, 2025

      Report: 71% of tech leaders won’t hire devs without AI skills

      July 17, 2025

      Could OpenAI’s rumored browser be a Chrome-killer? Here’s what I’m expecting

      July 18, 2025

      My favorite lens and screen-cleaning kit keeps my tech spotless, and it only costs $8

      July 18, 2025

      AI’s biggest impact on your workforce is still to come – 3 ways to avoid getting left behind

      July 18, 2025

      Remedy offers update on ‘FBC: Firebreak,’ details coming improvements — “We’ve seen many players come into the game and leave within the first hour.”

      July 18, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 18, 2025
      Recent

      The details of TC39’s last meeting

      July 18, 2025

      Online Examination System using PHP and MySQL

      July 18, 2025

      A tricky, educational quiz: it’s about time..

      July 18, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025
      Recent

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025

      7 Best Free and Open Source Linux FTP Servers

      July 18, 2025

      Best Free and Open Source Alternatives to Autodesk FBX Review

      July 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»NVIDIA AI Introduces AceReason-Nemotron for Advancing Math and Code Reasoning through Reinforcement Learning

    NVIDIA AI Introduces AceReason-Nemotron for Advancing Math and Code Reasoning through Reinforcement Learning

    May 25, 2025

    Reasoning capabilities represent a fundamental component of AI systems. The introduction of OpenAI o1 sparked significant interest in building reasoning models through large-scale reinforcement learning (RL) approaches. While DeepSeek-R1’s open-sourcing empowered the community to develop state-of-the-art reasoning models, critical technical details, including data curation strategies and specific RL training recipes, were omitted from the original report. This absence left researchers struggling to replicate the success, leading to fragmented efforts exploring different model sizes, initial checkpoints, and target domains. Different model sizes, initial checkpoints, distilled reasoning models, target domains, code, and physical AI are explored, but lack conclusive or consistent training recipes.

    Training language models for reasoning focuses on math and code domains through pretraining and supervised fine-tuning approaches. Early RL attempts using domain-specific reward models show limited gains due to inherent challenges for mathematical and coding tasks. Recent efforts following DeepSeek-R1’s release explore rule-based verification methods, where math problems require specific output formats for accurate verification, and code problems utilize compilation and execution feedback. However, these approaches focus on single domains rather than handling heterogeneous prompts, restricted benchmark evaluations limited to AIME and LiveCodeBench, and training instability issues requiring techniques like progressive response length increases and entropy collapse mitigation.

    Researchers from NVIDIA demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong small- and mid-sized models, outperforming state-of-the-art distillation-based approaches. The method employs a simple yet effective sequential training strategy: first conducting RL training on math-only prompts, followed by code-only prompts. This reveals that math-only RL enhances performance on mathematical benchmarks and improves code reasoning tasks, while extended code-only RL iterations further boost code performance with minimal degradation in math results. Moreover, a robust data curation pipeline is developed to collect challenging prompts with high-quality, verifiable answers and test cases, enabling verification-based RL across both domains.

    The method performs data curation for both math-only RL and code-only RL. For math-only RL, the pipeline merges DeepScaler and NuminaMath datasets covering algebra, combinatorics, number theory, and geometry, applying 9-gram filtering and strict exclusion rules for unsuitable content. DeepSeek-R1 model validates questions through eight attempts, retaining only majority-voted correct solutions via rule-based verification. The dataset for code-only RL is curated from modern competitive programming platforms using function-calling and stdin/stdout formats across algorithmic topics. Moreover, researchers filter incompatible problems, curate comprehensive test cases covering edge cases, and assign difficulty scores using DeepSeek-R1-671B evaluation, producing 8,520 verified coding problems.

    The results show that the AceReason-Nemotron-7B model achieves 14.5% and 14.6% accuracy improvements on AIME 2024/2025, respectively, with 14.2% and 8% gains on LiveCodeBench v5/v6 compared to initial SFT models. The 14B variant outperforms larger models like DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Llama-70B, achieving best-in-class results among open RL-based reasoning models. Compared to SOTA distillation-based models, AceReason-Nemotron-14B outperforms OpenMath-14B/32B by 2.1%/4.4% on AIME benchmarks and OpenCodeReasoning-14B by 1.7%/0.8% on LiveCodeBench, showing that RL achieves higher performance upper-bounds than distillation approaches by maintaining competitive performance against frontier models like QWQ-32B and o3-mini.

    In this paper, researchers show that large-scale RL enhances the reasoning capabilities of strong small- and mid-sized SFT models through sequential domain-specific training. The proposed approach of performing math-only RL followed by code-only prompts reveals that mathematical reasoning training significantly boosts performance across both mathematical and coding benchmarks. The data curation pipeline enables verification-based RL across heterogeneous domains by collecting challenging prompts with high-quality, verifiable answers and test cases. The findings reveal that RL pushes model reasoning limits, providing solutions to unsolvable problems and establishing new performance benchmarks for reasoning model development.


    Check out the Paper and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post NVIDIA AI Introduces AceReason-Nemotron for Advancing Math and Code Reasoning through Reinforcement Learning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleA Coding Implementation to Build an AI Agent with Live Python Execution and Automated Validation
    Next Article Microsoft Releases NLWeb: An Open Project that Allows Developers to Easily Turn Any Website into an AI-Powered App with Natural Language Interfaces

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 18, 2025
    Machine Learning

    Language Models Improve When Pretraining Data Matches Target Tasks

    July 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-5688 – Microsoft Windows DNS Buffer Overflow Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    FOSS Weekly #25.27: System Info, Retro Tools, Fedora 32-bit Update, Torvalds vs Bcachefs and More Linux Stuff

    Linux

    I set out to see if the Razer Blade 16’s redesign, AMD, and RTX 50-series put the laptop back on top

    News & Updates

    I tested the world’s thinnest SSD enclosure – here’s why it’s the perfect PC accessory for me

    News & Updates

    Highlights

    CVE-2025-5423 – Juzaweb CMS Remote Code Execution Vulnerability

    June 1, 2025

    CVE ID : CVE-2025-5423

    Published : June 2, 2025, 2:15 a.m. | 1 hour, 5 minutes ago

    Description : A vulnerability has been found in juzaweb CMS up to 3.4.2 and classified as critical. This vulnerability affects unknown code of the file /admin-cp/setting/system/general of the component General Setting Page. The manipulation leads to improper access controls. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

    Severity: 6.3 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-5409 – Mist Community Edition API Token Handler Remote Improper Access Control Vulnerability

    June 1, 2025

    Perficient Nagpur Celebrates Contentstack Implementation Certification Success!

    July 11, 2025

    Critical NVIDIA Container Toolkit Flaw Allows Privilege Escalation on AI Cloud Services

    July 18, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.