Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference

    This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference

    May 24, 2025

    A prominent area of exploration involves enabling large language models (LLMs) to function collaboratively. Multi-agent systems powered by LLMs are now being examined for their potential to coordinate challenging problems by splitting tasks and working simultaneously. This direction has gained attention due to its potential to increase efficiency and reduce latency in real-time applications.

    A common issue in collaborative LLM systems is agents’ sequential, turn-based communication. In such systems, each agent must wait for others to complete their reasoning steps before proceeding. This slows down processing, especially in situations demanding rapid responses. Moreover, agents often duplicate efforts or generate inconsistent outputs, as they cannot see the evolving thoughts of their peers during generation. This latency and redundancy reduce the practicality of deploying multi-agent LLMs, particularly when time and computation are constrained, such as edge devices.

    Most current solutions have relied on sequential or independently parallel sampling techniques to improve reasoning. Methods like Chain-of-Thought prompting help models to solve problems in a structured way but often come with increased inference time. Approaches such as Tree-of-Thoughts and Graph-of-Thoughts expand on this by branching reasoning paths. However, these approaches still do not allow for real-time mutual adaptation among agents. Multi-agent setups have explored collaborative methods, but mostly through alternating message exchanges, which again introduces delays. Some advanced systems propose complex dynamic scheduling or role-based configurations, which are not optimized for efficient inference.

    Research from MediaTek Research introduced a new method called Group Think. This approach enables multiple reasoning agents within a single LLM to operate concurrently, observing each other’s partial outputs at the token level. Each reasoning thread adapts to the evolving thoughts of the others mid-generation. This mechanism reduces duplication and enables agents to shift direction if another thread is better positioned to continue a specific line of reasoning. Group Think is implemented through a token-level attention mechanism that lets each agent attend to previously generated tokens from all agents, supporting real-time collaboration.

    The method works by assigning each agent its own sequence of token indices, allowing their outputs to be interleaved in memory. These interleaved tokens are stored in a shared cache accessible to all agents during generation. This design allows efficient attention across reasoning threads without architectural changes to the transformer model. The implementation works both on personal devices and in data centers. On local devices, it effectively uses idle compute by batching multiple agent outputs, even with a batch size of one. In data centers, Group Think allows multiple requests to be processed together, interleaving tokens across agents while maintaining correct attention dynamics.

    Performance tests demonstrate that Group Think significantly improves latency and output quality. In enumeration tasks, such as listing 100 distinct names, it achieved near-complete results more rapidly than conventional Chain-of-Thought approaches. The acceleration was proportional to the number of thinkers; for example, four thinkers reduced latency by a factor of about four. In divide-and-conquer problems, using the Floyd–Warshall algorithm on a graph of five nodes, four thinkers reduced the completion time to half that of a single agent. Group Think solved code generation challenges in programming tasks more effectively than baseline models. With four or more thinkers, the model produced correct code segments much faster than traditional reasoning models.

    This research shows that existing LLMs, though not explicitly trained for collaboration, can already demonstrate emergent group reasoning behaviors under the Group Think setup. In experiments, agents naturally diversified their work to avoid redundancy, often dividing tasks by topic or focus area. These findings suggest that Group Think’s efficiency and sophistication could be enhanced further with dedicated training on collaborative data.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleIs it recommended to use JMETER for API testing? How can I do this when I pass multiple request payloads via csv to add assertions?
    Next Article Step-by-Step Guide to Build a Customizable Multi-Tool AI Agent with LangGraph and Claude for Dynamic Agent Creation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    3 Digital Payment Strategies Shaping the Future of Financial Services

    Development

    Flutter + GitHub Copilot = Your New Superpower

    Development

    Massive Cyberattack Hits Italian Hotels: Tens of Thousands of Passports Stolen and Sold on the Dark Web

    Development

    KL-001-2025-007: Schneider Electric EcoStruxure IT Data Center Expert Unauthenticated Remote Code Execution

    Security

    Highlights

    Development

    eSIM Vulnerability in Kigen’s eUICC Cards Exposes Billions of IoT Devices to Malicious Attacks

    July 14, 2025

    Cybersecurity researchers have discovered a new hacking technique that exploits weaknesses in the eSIM technology…

    12.2TB of User Data Exposed in Passion.io Breach: Over 3.6 Million Records Left Unprotected

    June 5, 2025

    Critical Windows Server 2025 dMSA Vulnerability Enables Active Directory Compromise

    May 22, 2025

    The Problem With AI Generated Personas…

    April 1, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.