Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 22, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 22, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 22, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 22, 2025

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025

      How to get started with Microsoft Copilot on Windows 11

      May 22, 2025

      Microsoft blocks employees from sending emails that mention “Palestine” or “Gaza”

      May 22, 2025

      I missed out on the Clair Obscur: Expedition 33 Collector’s Edition but thankfully, the developers are launching something special

      May 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Perficient is Shaping the Future of Salesforce Innovation

      May 22, 2025
      Recent

      Perficient is Shaping the Future of Salesforce Innovation

      May 22, 2025

      Opal – Optimizely’s AI-Powered Marketing Assistant

      May 22, 2025

      Content Compliance Without the Chaos: How Optimizely CMP Empowers Financial Services Marketers

      May 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025
      Recent

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025

      How to get started with Microsoft Copilot on Windows 11

      May 22, 2025

      Microsoft blocks employees from sending emails that mention “Palestine” or “Gaza”

      May 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO

    Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO

    May 23, 2025

    The effectiveness of language models relies on their ability to simulate human-like step-by-step deduction. However, these reasoning sequences are resource-intensive and can be wasteful for simple questions that do not require elaborate computation. This lack of awareness regarding the complexity of the task is one of the core challenges in these models. They often default to detailed reasoning even for queries that could be answered directly. Such an approach increases token usage, extends response time, and increases system latency and memory usage. As a result, there’s a pressing need to equip language models with a mechanism that allows them to make autonomous decisions about whether to think deeply or respond succinctly.

    Current tools attempting to solve this issue either rely on manually set heuristics or prompt engineering to switch between short and long responses. Some methods use separate models and route questions based on complexity estimates. Still, these external routing systems often lack insight into the target model’s strengths and fail to make optimal decisions. Other techniques fine-tune models with prompt-based cues like “reasoning on/off,” but these rely on static rules rather than dynamic understanding. Despite some improvements, these approaches fail to enable fully autonomous and context-sensitive control within a single model.

    Researchers from the National University of Singapore introduced a new framework called Thinkless, which equips a language model with the ability to dynamically decide between using short or long-form reasoning. The framework is built on reinforcement learning and introduces two special control tokens—<short> for concise answers and <think> for detailed responses. By incorporating a novel algorithm called Decoupled Group Relative Policy Optimization (DeGRPO), Thinkless separates the training focus between selecting the reasoning mode and improving the accuracy of the generated response. This design prevents the model from falling into one-dimensional behavior and enables adaptive reasoning tailored to each query.

    The methodology involves two stages: warm-up distillation and reinforcement learning. In the distillation phase, Thinkless is trained using outputs from two expert models—one specializing in short responses and the other in detailed reasoning. This stage helps the model establish a firm link between the control token and the desired reasoning format. The reinforcement learning stage then fine-tunes the model’s ability to decide which reasoning mode to use. DeGRPO decomposes the learning into two separate objectives: one for training the control token and another for refining the response tokens. This approach avoids the gradient imbalances in earlier models, where longer responses would overpower the learning signal, leading to a collapse in reasoning diversity. Thinkless ensures that both <short> and <think> tokens receive balanced updates, promoting stable learning across response types.

    When evaluated, Thinkless significantly reduced long-form reasoning while preserving high accuracy. On the Minerva Algebra benchmark, the model used the <think> token in only 25.88% of cases while achieving 94.59% accuracy. In contrast, conventional reasoning models had to use extended chains of thought much more frequently. On the AIME 2024 dataset, Thinkless reached a 27.33% accuracy rate with 100% usage of the reasoning mode, showing that it could maintain performance when full reasoning was necessary. On the GSM8K dataset, it utilized <think> only 13.31% of the time, yet still achieved 84.18% accuracy. These results reflect the model’s ability to handle simple and complex queries with appropriate reasoning depth, cutting down on unnecessary token generation by as much as 90% in some tasks.

    Overall, this study from the National University of Singapore researchers presents a compelling solution to the inefficiencies of uniform reasoning in large language models. By introducing a mechanism that enables models to judge task complexity and adjust their inference strategy accordingly, Thinkless optimizes both accuracy and efficiency. The method balances depth of reasoning and response precision without relying on fixed rules, offering a data-driven approach to more intelligent language model behavior.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2025-47149 – i-FILTER Anti-Virus & Sandbox Pattern File Validation Remote Code Execution/DoS Vulnerability
    Next Article CVE-2025-48241 – Verge3D Cross-site Scripting (XSS)

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 22, 2025
    Machine Learning

    SPD: Sync-Point Drop for Efficient Tensor Parallelism of Large Language Models

    May 22, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Ultimate Cyber Hygiene Guide: Learn How to Simplify Your Security Efforts

    Development

    binafy/laravel-user-monitoring

    Development

    Advancements in Knowledge Distillation and Multi-Teacher Learning: Introducing AM-RADIO Framework

    Development

    Using Mastodon Effectively for Edtech Companies

    Artificial Intelligence

    Highlights

    LibreWolf vs Firefox: Which One is Better For Your Privacy?

    February 5, 2025

    When it comes to user privacy, Firefox is one of the best choices, but what…

    Tabular-JSON: Combining the best of JSON and CSV

    June 19, 2024

    From SplitText to MorphSVG: 5 Creative Demos Using Free GSAP Plugins

    May 19, 2025

    Comparative Analysis of Personalized Voice Activity Detection Systems: Assessing Real-World Effectiveness

    June 20, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.