Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      8 Key Questions Every CEO Should Ask Before Hiring a Node.js Development Company in 2025

      July 11, 2025

      Vibe Loop: AI-native reliability engineering for the real world

      July 10, 2025

      Docker Compose gets new features for building and running agents

      July 10, 2025

      Why Enterprises Are Choosing AI-Driven React.js Development Companies in 2025

      July 10, 2025

      This discounted SSD fixed my gaming handheld’s biggest weakness — Extra storage space for Steam Deck, ASUS ROG Ally, and Lenovo Legion Go

      July 11, 2025

      These are the 5 Prime Day deals I’d buy if I weren’t about to have a baby

      July 11, 2025

      OpenAI’s $6.5 billion purchase fuels Sam Altman’s quest to build next-gen computers for “transcendentally good” AI — The biggest tech disruption since the iPhone?

      July 11, 2025

      Don’t miss out on the best ROG Ally accessory deals going on now — Improve your gaming handheld PC with a microSD card, power bank, dock, and more

      July 11, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Regolith – A JavaScript library immune to ReDoS attacks

      July 11, 2025
      Recent

      Regolith – A JavaScript library immune to ReDoS attacks

      July 11, 2025

      Create Your Own Redux: Build a Custom State Management in React

      July 11, 2025

      Perficient Nagpur Celebrates Contentstack Implementation Certification Success!

      July 11, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      This discounted SSD fixed my gaming handheld’s biggest weakness — Extra storage space for Steam Deck, ASUS ROG Ally, and Lenovo Legion Go

      July 11, 2025
      Recent

      This discounted SSD fixed my gaming handheld’s biggest weakness — Extra storage space for Steam Deck, ASUS ROG Ally, and Lenovo Legion Go

      July 11, 2025

      These are the 5 Prime Day deals I’d buy if I weren’t about to have a baby

      July 11, 2025

      OpenAI’s $6.5 billion purchase fuels Sam Altman’s quest to build next-gen computers for “transcendentally good” AI — The biggest tech disruption since the iPhone?

      July 11, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Sampling Without Data is Now Scalable: Meta AI Releases Adjoint Sampling for Reward-Driven Generative Modeling

    Sampling Without Data is Now Scalable: Meta AI Releases Adjoint Sampling for Reward-Driven Generative Modeling

    May 21, 2025

    Data Scarcity in Generative Modeling

    Generative models traditionally rely on large, high-quality datasets to produce samples that replicate the underlying data distribution. However, in fields like molecular modeling or physics-based inference, acquiring such data can be computationally infeasible or even impossible. Instead of labeled data, only a scalar reward—typically derived from a complex energy function—is available to judge the quality of generated samples. This presents a significant challenge: how can one train generative models effectively without direct supervision from data?

    Meta AI Introduces Adjoint Sampling, a New Learning Algorithm Based on Scalar Rewards

    Meta AI tackles this challenge with Adjoint Sampling, a novel learning algorithm designed for training generative models using only scalar reward signals. Built on the theoretical framework of stochastic optimal control (SOC), Adjoint Sampling reframes the training process as an optimization task over a controlled diffusion process. Unlike standard generative models, it does not require explicit data. Instead, it learns to generate high-quality samples by iteratively refining them using a reward function—often derived from physical or chemical energy models.

    Adjoint Sampling excels in scenarios where only an unnormalized energy function is accessible. It produces samples that align with the target distribution defined by this energy, bypassing the need for corrective methods like importance sampling or MCMC, which are computationally intensive.

    Source: https://arxiv.org/abs/2504.11713

    Technical Details

    The foundation of Adjoint Sampling is a stochastic differential equation (SDE) that models how sample trajectories evolve. The algorithm learns a control drift u(x,t)u(x, t)u(x,t) such that the final state of these trajectories approximates a desired distribution (e.g., Boltzmann). A key innovation is its use of Reciprocal Adjoint Matching (RAM)—a loss function that enables gradient-based updates using only the initial and final states of sample trajectories. This sidesteps the need to backpropagate through the entire diffusion path, greatly improving computational efficiency.

    By sampling from a known base process and conditioning on terminal states, Adjoint Sampling constructs a replay buffer of samples and gradients, allowing multiple optimization steps per sample. This on-policy training method provides scalability unmatched by previous approaches, making it suitable for high-dimensional problems like molecular conformer generation.

    Moreover, Adjoint Sampling supports geometric symmetries and periodic boundary conditions, enabling models to respect molecular invariances like rotation, translation, and torsion. These features are crucial for physically meaningful generative tasks in chemistry and physics.

    Performance Insights and Benchmark Results

    Adjoint Sampling achieves state-of-the-art results in both synthetic and real-world tasks. On synthetic benchmarks such as the Double-Well (DW-4), Lennard-Jones (LJ-13 and LJ-55) potentials, it significantly outperforms baselines like DDS and PIS, especially in energy efficiency. For example, where DDS and PIS require 1000 evaluations per gradient update, Adjoint Sampling only uses three, with similar or better performance in Wasserstein distance and effective sample size (ESS).

    In a practical setting, the algorithm was evaluated on large-scale molecular conformer generation using the eSEN energy model trained on the SPICE-MACE-OFF dataset. Adjoint Sampling, especially its Cartesian variant with pretraining, achieved up to 96.4% recall and 0.60 Å mean RMSD, surpassing RDKit ETKDG—a widely used chemistry-based baseline—across all metrics. The method generalizes well to the GEOM-DRUGS dataset, showing substantial improvements in recall while maintaining competitive precision.

    The algorithm’s ability to explore the configuration space broadly, aided by its stochastic initialization and reward-based learning, results in greater conformer diversity—critical for drug discovery and molecular design.

    Conclusion: A Scalable Path Forward for Reward-Driven Generative Models

    Adjoint Sampling represents a major step forward in generative modeling without data. By leveraging scalar reward signals and an efficient on-policy training method grounded in stochastic control, it enables scalable training of diffusion-based samplers with minimal energy evaluations. Its integration of geometric symmetries and its ability to generalize across diverse molecular structures position it as a foundational tool in computational chemistry and beyond.


    Check out the Paper, Model on Hugging Face and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Sampling Without Data is Now Scalable: Meta AI Releases Adjoint Sampling for Reward-Driven Generative Modeling appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticlePlaywright Fixtures in Action : Create Reusable and Maintainable Tests
    Next Article Step-by-Step Guide to Create an AI agent with Google ADK

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 11, 2025
    Machine Learning

    Build an MCP application with Mistral models on AWS

    July 10, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Raspberry Pi 5 Desktop Mini PC: PiGro – system configuration tool

    Linux

    Not sure where to go with AI? Here’s your roadmap.

    Tech & Work

    Why Your Business Needs a React Native Mobile App in 2025📲

    Web Development

    Behind the Scenes: Building a Robust Ads Event Processing Pipeline

    News & Updates

    Highlights

    CVE-2025-46778 – Apache HTTP Server Denial of Service

    April 30, 2025

    CVE ID : CVE-2025-46778

    Published : April 30, 2025, 3:15 a.m. | 3 hours, 58 minutes ago

    Description : Rejected reason: Not used

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Microsoft could ditch OpenAI’s high-stake for-profit talks: “Holding out is Microsoft’s nuclear option, and they are just making OpenAI sweat”

    June 18, 2025

    Elelem – versatile LLM client

    June 26, 2025

    Stored XSS Flaw in TP-Link WR841N Routers Could Expose Admin Credentials (CVE-2025-25427)

    April 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.