Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Meta Introduces KernelLLM: An 8B LLM that Translates PyTorch Modules into Efficient Triton GPU Kernels

    Meta Introduces KernelLLM: An 8B LLM that Translates PyTorch Modules into Efficient Triton GPU Kernels

    May 20, 2025

    Meta has introduced KernelLLM, an 8-billion-parameter language model fine-tuned from Llama 3.1 Instruct, aimed at automating the translation of PyTorch modules into efficient Triton GPU kernels. This initiative seeks to lower the barriers to GPU programming by simplifying kernel development processes.

    Technical Overview

    KernelLLM is trained on approximately 25,000 paired examples of PyTorch modules and their corresponding Triton kernel implementations. The dataset, known as KernelBook, comprises filtered code from The Stack and synthetically generated samples using torch.compile() and other prompting techniques.

    The model employs a supervised instruction tuning approach, utilizing prompt templates that include format examples during both training and evaluation. Training was conducted over 10 epochs with a batch size of 32, using 16 GPUs over approximately 12 hours (192 GPU hours).

    Performance Evaluation

    KernelLLM’s performance was assessed using KernelBench-Triton, a benchmark designed to evaluate the generation of Triton kernels from PyTorch modules. The model achieved a Pass@1 score of 20.2, outperforming larger models such as GPT-4o (~200B parameters) and DeepSeek V3 (671B parameters), which scored 15 and 16 respectively. With multiple inferences, KernelLLM’s Pass@10 and Pass@20 scores reached 51.8 and 57.1, indicating robust performance in generating correct kernels.

    Implications for GPU Programming

    By automating the generation of Triton kernels from PyTorch modules, KernelLLM has the potential to streamline the development of GPU-accelerated applications. This could be particularly beneficial for developers seeking to optimize performance without delving into the complexities of manual kernel programming.

    The model’s ability to produce efficient kernels may also contribute to more accessible and efficient utilization of GPU resources, potentially impacting areas such as deep learning model training and inference.


    Check out the Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Meta Introduces KernelLLM: An 8B LLM that Translates PyTorch Modules into Efficient Triton GPU Kernels appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleTx-PEARS: Elevate Software Quality with Smarter NFT Practices
    Next Article A Step-by-Step Coding Guide to Efficiently Fine-Tune Qwen3-14B Using Unsloth AI on Google Colab with Mixed Datasets and LoRA Optimization

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    How to Extract Insights from Text Using Named Entity Recognition (NER)

    Development

    20+ Best Free Photoshop Layer Styles for 2025

    Learning Resources

    Local Pan-Privacy for Federated Analytics

    Machine Learning

    Three ways Figma explored horizontal scrolling

    Web Development

    Highlights

    Google AI Edge Gallery: Unleash On-Device AI Power on Your Android (and Soon iOS!)

    June 2, 2025

    Google AI Edge Gallery: Unleash On-Device AI Power on Your Android (and Soon iOS!)

    Google has recently and quietly released an application on GitHub titled Google AI Edge Gallery, enabling users to run AI models—hosted on the Hugging Face platform—directly on Android devices. An iOS …
    Read more

    Published Date:
    Jun 02, 2025 (4 hours, 36 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2024-0221

    affiliate program

    May 9, 2025

    Not Just a Manual: How Our Project Management Framework Helps Teams Deliver

    May 19, 2025

    How to Use Constructors in Java: A Beginner’s Guide

    July 8, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.