Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      10 Ways Node.js Development Boosts AI & Real-Time Data (2025-2026 Edition)

      August 18, 2025

      Looking to Outsource React.js Development? Here’s What Top Agencies Are Doing Right

      August 18, 2025

      Beyond The Hype: What AI Can Really Do For Product Design

      August 18, 2025

      BrowserStack launches Chrome extension that bundles 10+ manual web testing tools

      August 18, 2025

      How much RAM does your Linux PC really need in 2025?

      August 19, 2025

      Have solar at home? Supercharge that investment with this other crucial component

      August 19, 2025

      I replaced my MacBook charger with this compact wall unit – and wish I’d done it sooner

      August 19, 2025

      5 reasons to switch to an immutable Linux distro today – and which to try first

      August 19, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Sentry Adds Logs Support for Laravel Apps

      August 19, 2025
      Recent

      Sentry Adds Logs Support for Laravel Apps

      August 19, 2025

      Efficient Context Management with Laravel’s Remember Functions

      August 19, 2025

      Laravel Devtoolbox: Your Swiss Army Knife Artisan CLI

      August 19, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      From plateau predictions to buggy rollouts — Bill Gates’ GPT-5 skepticism looks strangely accurate

      August 18, 2025
      Recent

      From plateau predictions to buggy rollouts — Bill Gates’ GPT-5 skepticism looks strangely accurate

      August 18, 2025

      We gave OpenAI’s open-source AI a kid’s test — here’s what happened

      August 18, 2025

      With GTA 6, next-gen exclusives, and a console comeback on the horizon, Xbox risks sitting on the sidelines — here’s why

      August 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    May 18, 2025

    Recent advancements in LM agents have shown promising potential for automating intricate real-world tasks. These agents typically operate by proposing and executing actions through APIs, supporting applications such as software engineering, robotics, and scientific experimentation. As these tasks become more complex, LM agent frameworks have evolved to include multiple agents, multi-step retrieval, and tailored scaffolding to optimize performance. A central challenge lies in effectively exploring and understanding the environment, which has prompted the development of engineered scaffolds using tools, memory mechanisms, and custom pipelines. However, most existing methods assume partial observability, requiring agents to collect observations incrementally. While this assumption holds in dynamic or unfamiliar environments, it is less applicable in fully observable settings like SWE-bench, where all relevant information is accessible from the start.

    In software engineering, research on LM agents has focused on two main strategies: agent-based frameworks and structured pipelines. Agent-based systems, such as SWE-Agent and OpenHands CodeAct, allow LMs to interact autonomously with codebases, often through custom interfaces and retrieval tools. Other models like Moatless and AutoCodeRover enhance localization through search techniques, while SpecRover refines scaffolding design. Alternatively, structured pipelines—such as Agentless and CodeMonkey—decompose tasks into sequential phases like localization, repair, and validation. While these approaches depend on engineered components for performance, the current study proposes leveraging Long-Context LMs (LCLMs) to directly interpret the entire task environment. Advances in LCLM architecture and infrastructure now allow these models to outperform retrieval-augmented systems in many contexts, reducing reliance on complex external scaffolding. 

    Researchers from Stanford, IBM, and the University of Toronto explored whether complex scaffolding is necessary for LM agents tackling tasks like SWE-bench. They show that simply using LCLMs, such as Gemini-1.5-Pro, with proper prompting and no scaffolding, can achieve competitive performance—reaching 38% on SWE-Bench-Verified. Gemini-2.5-Pro, using the same simple setup, reaches 50.8%. Their work suggests that many complex agentic designs could be replaced with a single powerful LCLM, simplifying architecture and training. Additionally, a hybrid two-stage approach using Gemini-1.5-Pro and Claude-3.7 achieves a 48.6% solve rate, further supporting this simplified direction. 

    Traditional LM agents rely on interactive exploration due to partial observability, but many tasks, like software debugging, allow full observability. The study proposes state-in-context agents that leverage LCLMs to directly process full or compressed environment states, bypassing the need for complex agentic scaffolding. For large codebases, a ranking-based compression selects relevant files to fit within context limits. Two methods are introduced: DIRECTSOLVE, where LCLMs solve tasks using the full context; and SELECTSOLVE, where LCLMs localize relevant files for short-context LMs (SCLMs) to solve. Both use targeted patch formats and validation to ensure accuracy and reduce hallucination. 

    The experiments evaluate a simplified agent framework using LLMs on the SWE-bench Verified benchmark, which includes 500 real-world software engineering tasks. The proposed methods, DIRECTSOLVE and SELECTSOLVE, utilize LCLMs like Gemini-1.5-Pro and Gemini-2.5-Pro, and in SELECTSOLVE, an additional SCLM (Claude-3.7-Sonnet) for patch generation. Results show that DIRECTSOLVE outperforms complex agentic approaches like Agentless and CodeAct with minimal engineering. SELECTSOLVE further improves accuracy by leveraging stronger models for patching. Ablation studies highlight the importance of CoT prompting, code restatement, and token-efficient context design. Additionally, positioning relevant files at the start of the prompt improves performance, underscoring limitations in long-context processing. 

    In conclusion, the cost of using LCLM-based methods is currently higher than existing approaches like Agentless and CodeAct, averaging $2.60 per instance compared to $0.25 and $0.87, respectively. However, rapid drops in inference costs and increasing context lengths make LCLMs more practical. Techniques like KV caching significantly lower costs after initial runs, reducing it to about $0.725. Although slight codebase changes still limit caching benefits, further improvements could help. The study also suggests that LCLMs can handle long interaction histories, reducing the need for complex memory and retrieval mechanisms. Notably, unscaffolded LCLM models can perform competitively on SWE-bench tasks. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to Build a Powerful and Intelligent Question-Answering System by Using Tavily Search API, Chroma, Google Gemini LLMs, and the LangChain Framework
    Next Article Free LinkedIn Text Formatter

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 18, 2025
    Machine Learning

    Rethinking Non-Negative Matrix Factorization with Implicit Neural Representations

    August 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Surface Pro 11 & Laptop 7 Get New Battery Charging Limit With Latest Update

    Operating Systems

    UX for Beginners

    Web Development

    CVE-2025-3905 – Siemens PLC Cross-site Scripting

    Common Vulnerabilities and Exposures (CVEs)

    Microsoft Edge Integrates Local AI and Enterprise Tools at Build 2025

    Operating Systems

    Highlights

    Artificial Intelligence

    Introducing Gemini: our largest and most capable AI model

    May 13, 2025

    Making AI more helpful for everyone Source: Read More 

    Clair Obscur: Expedition 33 just cracked me into installing a mod for the first time ever

    May 5, 2025

    7 ways to lock down your phone’s security – before it’s too late

    May 5, 2025

    CVE-2025-5192 – Soar Cloud HRD Missing Authentication Bypass Vulnerability

    June 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.