Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    May 15, 2025

    Machine learning engineering (MLE) involves developing, tuning, and deploying machine learning systems that require iterative experimentation, model optimization, and robust handling of data pipelines. As model complexity increases, so do the challenges associated with orchestrating end-to-end workflows efficiently. Researchers have explored the automation of MLE tasks using AI agents to handle these demands. Large Language Models (LLMs), particularly those with strong coding and problem-solving abilities, have shown potential to enhance this process significantly. Their role in automating structured workflows is now being tested through rigorous benchmarks and environments tailored to emulate real-world MLE scenarios.

    A primary hurdle in automating machine learning engineering lies in the work’s inherently iterative and feedback-driven nature. Tasks such as hyperparameter tuning, model debugging, and data preprocessing cannot be resolved in one step; they require repeated modifications and evaluations. Traditional evaluation tools for AI models often rely on static datasets and do not allow for real-time error feedback or interactive problem-solving. This limitation prevents LLM agents from learning through trial and error, an essential component for mastering engineering tasks that evolve or require multiple attempts for success.

    Earlier tools to evaluate LLMs in engineering or coding tasks have mostly focused on individual subtasks or isolated challenges. These include tools like MLAgentBench and DSBench, which rely on narrow test cases sourced from Kaggle competitions or synthetic datasets. While they cover more than basic tasks, they do not enable agents to perform code execution, debugging, or results interpretation in a live setting. Other environments, like SWE-Gym, focus exclusively on software engineering and lack support for machine learning-specific workflows. These limitations have slowed the creation of versatile, high-performing MLE agents that can handle real-time project complexities.

    Researchers from Georgia Institute of Technology and Stanford University have introduced MLE-Dojo, a framework with an interactive environment that connects LLM agents with real-world machine learning tasks derived from over 200 Kaggle competitions. This framework supports tabular data analysis, computer vision, natural language processing, and time-series forecasting challenges. Research introduced MLE-Dojo to allow agents to write, execute, and revise code in a sandboxed, feedback-rich setting. The goal was to replicate the interactive cycles that human engineers follow, enabling structured learning for agents. The environment includes pre-installed dependencies, evaluation metrics, and supports supervised fine-tuning and reinforcement learning strategies.

    MLE-Dojo’s structure consists of modular components that support a wide range of MLE challenges. Each task runs within its own Docker container, isolating it for safety and reproducibility. Agents interact with the environment through a Partially Observable Markov Decision Process, receiving observations, performing actions, and gaining rewards based on performance. The environment supports five primary action types: requesting task information, validating code, executing code, retrieving interaction history, and resetting the environment. It also provides a detailed observation space that includes datasets, execution results, and error messages. The agent receives structured feedback after every interaction, allowing for step-wise improvement. This modular setup helps maintain interoperability and simplifies adding new tasks to the system.

    The evaluation included eight frontier LLMs—Gemini-2.5-Pro, DeepSeek-r1, o3-mini, GPT-4o, GPT-4o-mini, Gemini-2.0-Pro, Gemini-2.0-Flash, and DeepSeek-v3—across four core machine learning domains. Gemini-2.5-Pro achieved the highest Elo rating of 1257, followed by DeepSeek-r1 at 1137 and o3-mini at 1108. Regarding HumanRank, Gemini-2.5-Pro led with 61.95%, indicating its superior performance over human benchmarks. Models like GPT-4o-mini executed code only 20% of the time, adopting conservative strategies, while o3-mini performed executions in over 90% of the cases. The average failure rate for Gemini-2.5-Pro remained the lowest across validation and execution phases, reinforcing its robustness. Among domains, computer vision posed the greatest challenge, with most models scoring under 60 in HumanRank. Reasoning models generally produced longer outputs and maintained stronger performance consistency across iterations.

    The research highlights the difficulty of applying LLMs to full machine learning workflows. It outlines a comprehensive solution in MLE-Dojo that enables learning through interaction, not just completion. MLE-Dojo sets a new standard for training and evaluating autonomous MLE agents by simulating engineering environments more accurately.


    Check out the Paper, Project Page and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow End-to-End Testing Supports Grid Reliability for Energy Providers
    Next Article ByteDance Introduces Seed1.5-VL: A Vision-Language Foundation Model Designed to Advance General-Purpose Multimodal Understanding and Reasoning

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Composition in CSS

    News & Updates

    How to Improve Web Accessibility with Landmarks – Explained with Examples

    Development

    LLMs Can Now Reason in Parallel: UC Berkeley and UCSF Researchers Introduce Adaptive Parallel Reasoning to Scale Inference Efficiently Without Exceeding Context Windows

    Machine Learning

    How to Verify Any (Reasonable) Distribution Property: Computationally Sound Argument Systems for Distributions

    Machine Learning

    Highlights

    Google waarschuwt voor actief misbruik van V8-kwetsbaarheid in Chrome

    July 1, 2025

    Google waarschuwt voor actief misbruik van V8-kwetsbaarheid in Chrome

    Aanvallers maken actief misbruik van een kwetsbaarheid in de V8-engine van Google Chrome voor het aanvallen van gebruikers van de browser, zo heeft het techbedrijf aangekondigd. Er zijn updates uitgeb …
    Read more

    Published Date:
    Jul 01, 2025 (4 hours, 21 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-6554

    VidsYouTube – Free Online Video Downloader for YouTube, TikTok, Instagram & More

    June 18, 2025

    This month in security with Tony Anscombe – May 2025 edition

    May 31, 2025

    Russian Airline Aeroflot Hit by Cyberattack, Hackers Threaten to Leak Passenger Data

    July 28, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.