Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 14, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 14, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 14, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 14, 2025

      I test a lot of AI coding tools, and this stunning new OpenAI release just saved me days of work

      May 14, 2025

      How to use your Android phone as a webcam when your laptop’s default won’t cut it

      May 14, 2025

      The 5 most customizable Linux desktop environments – when you want it your way

      May 14, 2025

      Gen AI use at work saps our motivation even as it boosts productivity, new research shows

      May 14, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025
      Recent

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold at the 2025 Hermes Creative Awards

      May 14, 2025

      PIM for Azure Resources

      May 14, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025
      Recent

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025

      You can now share an app/browser window with Copilot Vision to help you with different tasks

      May 14, 2025

      Microsoft will gradually retire SharePoint Alerts over the next two years

      May 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    May 15, 2025

    Machine learning engineering (MLE) involves developing, tuning, and deploying machine learning systems that require iterative experimentation, model optimization, and robust handling of data pipelines. As model complexity increases, so do the challenges associated with orchestrating end-to-end workflows efficiently. Researchers have explored the automation of MLE tasks using AI agents to handle these demands. Large Language Models (LLMs), particularly those with strong coding and problem-solving abilities, have shown potential to enhance this process significantly. Their role in automating structured workflows is now being tested through rigorous benchmarks and environments tailored to emulate real-world MLE scenarios.

    A primary hurdle in automating machine learning engineering lies in the work’s inherently iterative and feedback-driven nature. Tasks such as hyperparameter tuning, model debugging, and data preprocessing cannot be resolved in one step; they require repeated modifications and evaluations. Traditional evaluation tools for AI models often rely on static datasets and do not allow for real-time error feedback or interactive problem-solving. This limitation prevents LLM agents from learning through trial and error, an essential component for mastering engineering tasks that evolve or require multiple attempts for success.

    Earlier tools to evaluate LLMs in engineering or coding tasks have mostly focused on individual subtasks or isolated challenges. These include tools like MLAgentBench and DSBench, which rely on narrow test cases sourced from Kaggle competitions or synthetic datasets. While they cover more than basic tasks, they do not enable agents to perform code execution, debugging, or results interpretation in a live setting. Other environments, like SWE-Gym, focus exclusively on software engineering and lack support for machine learning-specific workflows. These limitations have slowed the creation of versatile, high-performing MLE agents that can handle real-time project complexities.

    Researchers from Georgia Institute of Technology and Stanford University have introduced MLE-Dojo, a framework with an interactive environment that connects LLM agents with real-world machine learning tasks derived from over 200 Kaggle competitions. This framework supports tabular data analysis, computer vision, natural language processing, and time-series forecasting challenges. Research introduced MLE-Dojo to allow agents to write, execute, and revise code in a sandboxed, feedback-rich setting. The goal was to replicate the interactive cycles that human engineers follow, enabling structured learning for agents. The environment includes pre-installed dependencies, evaluation metrics, and supports supervised fine-tuning and reinforcement learning strategies.

    MLE-Dojo’s structure consists of modular components that support a wide range of MLE challenges. Each task runs within its own Docker container, isolating it for safety and reproducibility. Agents interact with the environment through a Partially Observable Markov Decision Process, receiving observations, performing actions, and gaining rewards based on performance. The environment supports five primary action types: requesting task information, validating code, executing code, retrieving interaction history, and resetting the environment. It also provides a detailed observation space that includes datasets, execution results, and error messages. The agent receives structured feedback after every interaction, allowing for step-wise improvement. This modular setup helps maintain interoperability and simplifies adding new tasks to the system.

    The evaluation included eight frontier LLMs—Gemini-2.5-Pro, DeepSeek-r1, o3-mini, GPT-4o, GPT-4o-mini, Gemini-2.0-Pro, Gemini-2.0-Flash, and DeepSeek-v3—across four core machine learning domains. Gemini-2.5-Pro achieved the highest Elo rating of 1257, followed by DeepSeek-r1 at 1137 and o3-mini at 1108. Regarding HumanRank, Gemini-2.5-Pro led with 61.95%, indicating its superior performance over human benchmarks. Models like GPT-4o-mini executed code only 20% of the time, adopting conservative strategies, while o3-mini performed executions in over 90% of the cases. The average failure rate for Gemini-2.5-Pro remained the lowest across validation and execution phases, reinforcing its robustness. Among domains, computer vision posed the greatest challenge, with most models scoring under 60 in HumanRank. Reasoning models generally produced longer outputs and maintained stronger performance consistency across iterations.

    The research highlights the difficulty of applying LLMs to full machine learning workflows. It outlines a comprehensive solution in MLE-Dojo that enables learning through interaction, not just completion. MLE-Dojo sets a new standard for training and evaluating autonomous MLE agents by simulating engineering environments more accurately.


    Check out the Paper, Project Page and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleA Step-by-Step Guide to Build an Automated Knowledge Graph Pipeline Using LangGraph and NetworkX
    Next Article CVE-2025-4699 – PHPGurukul Apartment Visitors Management System SQL Injection Vulnerability

    Related Posts

    Machine Learning

    A Step-by-Step Guide to Build an Automated Knowledge Graph Pipeline Using LangGraph and NetworkX

    May 15, 2025
    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 14, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Enhance database performance with Amazon RDS dedicated log volumes

    Databases

    CVE-2025-47703 – Drupal COOKiES Consent Management Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)

    Continuous Threat Exposure Management (CTEM): Key Insights for CISOs

    Development

    Git Interactive Rebase Tool – terminal-based sequence editor for interactive rebase

    Linux

    Highlights

    Don’t want to pay for ChatGPT Deep Research? Try this free open-source alternative

    February 5, 2025

    Hugging Face launched a research agent that isn’t $200 a month — but there are…

    Researchers Uncover Malware in Fake Discord PyPI Package Downloaded 11,500+ Times

    May 7, 2025

    Build generative AI applications with Amazon Titan Text Premier, Amazon Bedrock, and AWS CDK

    May 14, 2024

    Best Laptops for College Students on a Budget [2024 Guide]

    July 1, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.