Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      How AI further empowers value stream management

      June 27, 2025

      12 Top ReactJS Development Companies in 2025

      June 27, 2025

      Not sure where to go with AI? Here’s your roadmap.

      June 27, 2025

      This week in AI dev tools: A2A donated to Linux Foundation, OpenAI adds Deep Research to API, and more (June 27, 2025)

      June 27, 2025

      Microsoft’s Copilot+ has been here over a year and I still don’t care about it — but I do wish I had one of its features

      June 29, 2025

      SteelSeries’ latest wireless mouse is cheap and colorful — but is this the one to spend your money on?

      June 29, 2025

      DistroWatch Weekly, Issue 1128

      June 29, 2025

      Your Slack app is getting a big upgrade – here’s how to try the new AI features

      June 29, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      How Code Feedback MCP Enhances AI-Generated Code Quality

      June 28, 2025
      Recent

      How Code Feedback MCP Enhances AI-Generated Code Quality

      June 28, 2025

      PRSS Site Creator – Create Blogs and Websites from Your Desktop

      June 28, 2025

      Say hello to ECMAScript 2025

      June 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft’s Copilot+ has been here over a year and I still don’t care about it — but I do wish I had one of its features

      June 29, 2025
      Recent

      Microsoft’s Copilot+ has been here over a year and I still don’t care about it — but I do wish I had one of its features

      June 29, 2025

      SteelSeries’ latest wireless mouse is cheap and colorful — but is this the one to spend your money on?

      June 29, 2025

      Microsoft confirms Windows 11 25H2, might make Windows more stable

      June 29, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Investigates Test-Time Scaling of English-Centric RLMs for Enhanced Multilingual Reasoning and Domain Generalization

    This AI Paper Investigates Test-Time Scaling of English-Centric RLMs for Enhanced Multilingual Reasoning and Domain Generalization

    May 14, 2025

    Reasoning language models, or RLMs, are increasingly used to simulate step-by-step problem-solving by generating long, structured reasoning chains. These models break down complex questions into simpler parts and build logical steps to reach answers. This chain-of-thought (CoT) approach has proven effective in improving output quality, especially in mathematical and logical tasks. Despite multilingual capabilities in many modern large models, the focus of research and training has remained largely centered on English, leaving a gap in understanding how well these reasoning skills translate to other languages.

    One major challenge is that most RLMs are fine-tuned on English data, which limits their ability to reason effectively in other languages. This becomes especially problematic for low-resource languages that have limited training examples. The models may default to English thinking patterns, producing lower-quality outputs when prompted in another language. Furthermore, differences in language structure can cause reasoning errors, particularly when a model trained in one language is expected to infer logic in another without adequate linguistic alignment.

    Current techniques employ zero-shot or few-shot prompting strategies to manage these limitations, often using English as a pivot language. Some efforts involve presenting prompts in the same language as the query to preserve linguistic consistency. However, small models have minimal benefits due to limited capacity, and even large models show inconsistent performance when reasoning in low-resource languages. Despite multilingual pretraining, the gap between the training and reasoning language continues to hinder accurate multilingual reasoning.

    The Brown University and MBZUAI research team focused on evaluating how increasing test-time computation, particularly through extended reasoning chains, can affect the multilingual reasoning abilities of English-centric RLMs. They investigated using s1 models based on the Qwen2.5-Instruct architecture and fine-tuned on 1,000 English STEM reasoning samples. These models were tested across various languages using benchmarks like MGSM and Global-MMLU to answer four core questions: the effectiveness of crosslingual test-time scaling, language-mixing behaviors, performance under language-forcing, and cross-domain generalization.

    In-depth experiments showed that models with more parameters significantly benefited from increased test-time thinking tokens. The 14B s1 model, when scaled to 8,000 thinking tokens, achieved an average accuracy of 81% across non-English languages in MGSM. It outperformed models like Qwen2.5-14B-Instruct by +23.1% in French and +41.6% in Swahili. Even though the model was trained only in English, its performance surpassed that of larger models such as DeepSeek’s R1-Distill-Qwen-32B in several high-resource languages. The study also found that reasoning in high-resource languages like Chinese and English is more efficient, requiring fewer tokens and delivering better results than in low-resource languages like Swahili or Telugu.

    A key observation was the “quote-and-think” behavior, where the model quoted non-English phrases from prompts and reasoned in English. This consistent pattern across languages like Japanese and Russian suggested that the model used its multilingual understanding to interpret non-English input without direct translation. Language-forcing experiments further confirmed that forcing reasoning in high-resource languages yielded better results, while strict reasoning in low-resource languages led to significant accuracy drops and computational inefficiencies.

    Despite strong results in STEM-related tasks, performance gains did not transfer to domains like cultural commonsense or humanities. In benchmarks like FORK, increasing thinking tokens sometimes reduced performance, indicating overthinking. The study concludes that while test-time scaling enhances multilingual reasoning in high-resource languages, it does not generalize effectively to out-of-domain tasks or low-resource languages, indicating the need for further research on balanced multilingual training and domain adaptation.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    Here’s a brief overview of what we’re building at Marktechpost:

    • ML News Community – r/machinelearningnews (92k+ members)
    • Newsletter– airesearchinsights.com/(30k+ subscribers)
    • miniCON AI Events – minicon.marktechpost.com
    • AI Reports & Magazines – magazine.marktechpost.com
    • AI Dev & Research News – marktechpost.com (1M+ monthly readers)
    • Partner with us

    The post This AI Paper Investigates Test-Time Scaling of English-Centric RLMs for Enhanced Multilingual Reasoning and Domain Generalization appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAgent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization
    Next Article Rethinking Toxic Data in LLM Pretraining: A Co-Design Approach for Improved Steerability and Detoxification

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 29, 2025
    Machine Learning

    AWS costs estimation using Amazon Q CLI and AWS Cost Analysis MCP

    June 27, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    GitHub found 39M secret leaks in 2024. Here’s what we’re doing to help

    News & Updates

    CVE-2025-2236 – OpenText Advanced Authentication Information Elicitation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Microsoft confirms Offline Calendar for New Outlook on Windows 11

    Operating Systems

    CVE-2025-5173 – HumanSignal Label Studio ML Backend Deserialization Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Week in review: MITRE ATT&CK v17.0 released, PoC for Erlang/OTP SSH bug is public

    April 27, 2025

    Week in review: MITRE ATT&CK v17.0 released, PoC for Erlang/OTP SSH bug is public

    Here’s an overview of some of last week’s most interesting news, articles, interviews and videos:
    Released: MITRE ATT&CK v17.0, now with ESXi attack TTPs
    MITRE has released the latest version of its A …
    Read more

    Published Date:
    Apr 27, 2025 (4 hours, 17 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-34028

    CVE-2025-32433

    CVE-2025-27610

    CVE-2024-51979 – HP IPP HTTP Stack Buffer Overflow

    June 25, 2025

    Kernel-level container insights: Utilizing eBPF with Cilium, Tetragon, and SBOMs for security

    June 18, 2025

    How Inclusive Design Leading and Creating Solutions for Universal Design

    June 17, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.