Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 13, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 13, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 13, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 13, 2025

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025

      Microsoft shares rare look at radical Windows 11 Start menu designs it explored before settling on the least interesting one of the bunch

      May 13, 2025

      NVIDIA’s new GPU driver adds DOOM: The Dark Ages support and improves DLSS in Microsoft Flight Simulator 2024

      May 13, 2025

      How to install and use Ollama to run AI LLMs on your Windows 11 PC

      May 13, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Community News: Latest PECL Releases (05.13.2025)

      May 13, 2025
      Recent

      Community News: Latest PECL Releases (05.13.2025)

      May 13, 2025

      How We Use Epic Branches. Without Breaking Our Flow.

      May 13, 2025

      I think the ergonomics of generators is growing on me.

      May 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025
      Recent

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025

      Microsoft shares rare look at radical Windows 11 Start menu designs it explored before settling on the least interesting one of the bunch

      May 13, 2025

      NVIDIA’s new GPU driver adds DOOM: The Dark Ages support and improves DLSS in Microsoft Flight Simulator 2024

      May 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Agent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization

    Agent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization

    May 14, 2025

    Identifying the exact location of a software issue—such as a bug or feature request—remains one of the most labor-intensive tasks in the development lifecycle. Despite advances in automated patch generation and code assistants, the process of pinpointing where in the codebase a change is needed often consumes more time than determining how to fix it. Agent-based approaches powered by large language models (LLMs) have made headway by simulating developer workflows through iterative tool use and reasoning. However, these systems are typically slow, brittle, and expensive to operate, especially when built on closed-source models. In parallel, existing code retrieval models—while faster—are not optimized for the verbosity and behavioral focus of real-world issue descriptions. This misalignment between natural language inputs and code search capability presents a fundamental challenge for scalable automated debugging.

    SWERank — A Practical Framework for Precise Localization

    To address these limitations, Salesforce AI has introduced SWERank, a lightweight and effective retrieve-and-rerank framework tailored for software issue localization. SWERank is designed to bridge the gap between efficiency and precision by reframing localization as a code ranking task. The framework consists of two key components:

    • SWERankEmbed, a bi-encoder retrieval model that encodes GitHub issues and code snippets into a shared embedding space for efficient similarity-based retrieval.
    • SWERankLLM, a listwise reranker built on instruction-tuned LLMs that refines the ranking of retrieved candidates using contextual understanding.

    To train this system, the research team curated SWELOC, a large-scale dataset extracted from public GitHub repositories, linking real-world issue reports with corresponding code changes. SWELOC introduces contrastive training examples using consistency filtering and hard-negative mining to ensure data quality and relevance.

    Architecture and Methodological Contributions

    At its core, SWERank follows a two-stage pipeline. First, SWERankEmbed maps a given issue description and candidate functions into dense vector representations. Using a contrastive InfoNCE loss, the retriever is trained to increase the similarity between an issue and its true associated function while reducing its similarity to unrelated code snippets. Notably, the model benefits from carefully mined hard negatives—code functions that are semantically similar but not relevant—which improve the model’s discriminative capability.

    The reranking stage leverages SWERankLLM, a listwise LLM-based reranker that processes an issue description along with top-k code candidates and generates a ranked list where the relevant code appears at the top. Importantly, the training objective is adapted to settings where only the true positive is known. The model is trained to output the identifier of the relevant code snippet, maintaining compatibility with listwise inference while simplifying the supervision process.

    Together, these components allow SWERank to offer high performance without requiring multiple rounds of interaction or costly agent orchestration.

    Insights

    Evaluations on SWE-Bench-Lite and LocBench—two standard benchmarks for software localization—demonstrate that SWERank achieves state-of-the-art results across file, module, and function levels. On SWE-Bench-Lite, SWERankEmbed-Large (7B) attained a function-level accuracy@10 of 82.12%, outperforming even LocAgent running with Claude-3.5. When coupled with SWERankLLM-Large (32B), performance further improved to 88.69%, establishing a new benchmark for this task.

    In addition to performance gains, SWERank offers substantial cost benefits. Compared to Claude-powered agents, which average around $0.66 per example, SWERankLLM’s inference cost is $0.011 for the 7B model and $0.015 for the 32B variant—delivering up to 6x better accuracy-to-cost ratio. Moreover, the 137M parameter SWERankEmbed-Small model achieves competitive results, demonstrating the framework’s scalability and efficiency even on lightweight architectures.

    Beyond benchmark performance, experiments also show that SWELOC data improves a broad class of embedding and reranking models. Models pre-trained for general-purpose retrieval exhibited significant accuracy gains when fine-tuned with SWELOC, validating its utility as a training resource for issue localization tasks.

    Conclusion

    SWERank introduces a compelling alternative to traditional agent-based localization approaches by modeling software issue localization as a ranking problem. Through its retrieve-and-rerank architecture, SWERank delivers state-of-the-art accuracy while maintaining low inference cost and minimal latency. The accompanying SWELOC dataset provides a high-quality training foundation, enabling robust generalization across various codebases and issue types.

    By decoupling localization from agentic multi-step reasoning and grounding it in efficient neural retrieval, Salesforce AI demonstrates that practical, scalable solutions for debugging and code maintenance are not only possible—but well within reach using open-source tools. SWERank sets a new bar for accuracy, efficiency, and deployability in automated software engineering.


    Check out the Paper and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    Here’s a brief overview of what we’re building at Marktechpost:

    • ML News Community – r/machinelearningnews (92k+ members)
    • Newsletter– airesearchinsights.com/(30k+ subscribers)
    • miniCON AI Events – minicon.marktechpost.com
    • AI Reports & Magazines – magazine.marktechpost.com
    • AI Dev & Research News – marktechpost.com (1M+ monthly readers)
    • Partner with us

    The post Agent-Based Debugging Gets a Cost-Effective Alternative: Salesforce AI Presents SWERank for Accurate and Scalable Software Issue Localization appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleA Step-by-Step Guide to Build a Fast Semantic Search and RAG QA Engine on Web-Scraped Data Using Together AI Embeddings, FAISS Retrieval, and LangChain
    Next Article This AI Paper Investigates Test-Time Scaling of English-Centric RLMs for Enhanced Multilingual Reasoning and Domain Generalization

    Related Posts

    Machine Learning

    This AI Paper Investigates Test-Time Scaling of English-Centric RLMs for Enhanced Multilingual Reasoning and Domain Generalization

    May 14, 2025
    Machine Learning

    A Step-by-Step Guide to Build a Fast Semantic Search and RAG QA Engine on Web-Scraped Data Using Together AI Embeddings, FAISS Retrieval, and LangChain

    May 14, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    Samsung to form HVAC joint venture with Lennox to expand sales in North America

    Development

    Pakistan-linked Hackers Deploy Python, Golang, and Rust Malware on Indian Targets

    Development

    The Thunderbird email client finally landed on Android, and it was worth the wait

    Development

    UX and User Testing in the Age of AI-Driven Web Navigation

    Development

    Highlights

    Subverting control with weak references

    March 16, 2025

    Comments Source: Read More 

    Exploring JavaScript symbols

    November 21, 2024

    Google AI Unveils New Benchmarks in Video Analysis with Streaming Dense Captioning Model

    April 6, 2024

    Malicious PyPI Package Targets MEXC Trading API to Steal Credentials and Redirect Orders

    April 15, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.