Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      tRPC vs GraphQL vs REST: Choosing the right API design for modern web applications

      June 26, 2025

      Jakarta EE 11 Platform launches with modernized Test Compatibility Kit framework

      June 26, 2025

      Can Good UX Protect Older Users From Digital Scams?

      June 25, 2025

      Warp 2.0 evolves terminal experience into an Agentic Development Environment

      June 25, 2025

      Microsoft Copilot secures a spot in classrooms as a “thought partner” — with Copilot Chat backed by OpenAI’s GPT-4o

      June 26, 2025

      OpenAI started as a “countervailing force” to Google — did Elon Musk and Sam Altman torpedo DeepMind’s plans to dictate AGI?

      June 26, 2025

      Gears of War: Reloaded preorders — where to buy and everything you need to know

      June 26, 2025

      OpenAI’s Sam Altman breaks silence on Microsoft feud with Satya Nadella — citing “points of tension” amid evolution plans

      June 26, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Are Semantic Layers Sexy Again? or The Rise and Fall and Rise of Semantic Layers

      June 26, 2025
      Recent

      Are Semantic Layers Sexy Again? or The Rise and Fall and Rise of Semantic Layers

      June 26, 2025

      Salesforce Marketing Cloud Engagement vs. Oracle Eloqua

      June 26, 2025

      Exploring Lucidworks Fusion and Coveo Using Apache Solr

      June 26, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft Copilot secures a spot in classrooms as a “thought partner” — with Copilot Chat backed by OpenAI’s GPT-4o

      June 26, 2025
      Recent

      Microsoft Copilot secures a spot in classrooms as a “thought partner” — with Copilot Chat backed by OpenAI’s GPT-4o

      June 26, 2025

      OpenAI started as a “countervailing force” to Google — did Elon Musk and Sam Altman torpedo DeepMind’s plans to dictate AGI?

      June 26, 2025

      Gears of War: Reloaded preorders — where to buy and everything you need to know

      June 26, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Microsoft Researchers Introduce ARTIST: A Reinforcement Learning Framework That Equips LLMs with Agentic Reasoning and Dynamic Tool Use

    Microsoft Researchers Introduce ARTIST: A Reinforcement Learning Framework That Equips LLMs with Agentic Reasoning and Dynamic Tool Use

    May 10, 2025

    LLMs have made impressive gains in complex reasoning, primarily through innovations in architecture, scale, and training approaches like RL. RL enhances LLMs by using reward signals to guide the model towards more effective reasoning strategies, resulting in longer and more coherent thought processes that adapt dynamically to a task’s complexity. Despite this, most RL-enhanced LLMs rely heavily on static internal knowledge and text-only reasoning, making them ill-suited for tasks requiring real-time information, domain-specific expertise, or precise computations. This limitation is especially evident in knowledge-intensive or open-ended problems where the inability to access and interact with external tools leads to inaccuracies or hallucinations.

    To overcome these constraints, recent work has explored agentic reasoning, where LLMs dynamically engage with external tools and environments during the reasoning process. These tools include web search, APIs, and code execution platforms, while environments range from simulated browsers to operating systems. Agentic reasoning enables models to plan, adapt, and solve tasks interactively, beyond static inference. However, current methods for tool integration often depend on manually designed prompts or supervised fine-tuning, which hinder scalability and generalization. Emerging reinforcement learning techniques like Group Relative Policy Optimization (GRPO) provide more efficient and adaptive training for tool use without step-level supervision. Yet, the intersection of RL, tool use, and agentic decision-making remains underexplored, particularly in real-world tasks that demand multi-turn reasoning, dynamic planning, and robust external interaction. 

    Microsoft Research introduces ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers), a framework that combines agentic reasoning, reinforcement learning, and dynamic tool use to enhance LLMs. ARTIST enables models to autonomously decide when, how, and which tools to use during multi-step reasoning, learning robust strategies without step-level supervision. The model improves reasoning and interaction with external environments through integrated tool queries and outputs. Evaluated on challenging math and function-calling benchmarks, ARTIST outperforms top models like GPT-4o, achieving up to 22% gains. It demonstrates emergent agentic behaviors, setting a new standard in generalizable and interpretable problem-solving. 

    ARTIST is a flexible framework that enables LLMs to interact with external tools and environments using reinforcement learning. It alternates between reasoning and tool use, allowing the model to choose when and how to invoke tools like code interpreters or APIs. Training uses GRPO, which avoids value functions and uses outcome-based group rewards. ARTIST structures rollouts into reasoning, tool queries, tool outputs, and final answers, with a composite reward system encouraging correctness, proper format, and successful tool use, enabling adaptive, multi-step problem-solving. 

    ARTIST outperforms various baselines, including GPT-4o and tool-augmented LLMs, on complex mathematical benchmarks like AMC, AIME, and Olympiad. It achieves higher Pass@1 accuracy, with notable gains of up to 22% over base models and over 35% compared to other tool-integrated methods. ARTIST’s advantage comes from its agentic reinforcement learning, enabling it to use external tools and refine multi-step solutions strategically. Compared to prompt-based tool usage, it shows superior tool invocation, response quality, and reasoning depth. While its benefits are most evident in complex tasks, ARTIST significantly improves simpler datasets like MATH-500 through selective tool use. 

    In conclusion, ARTIST is a framework that combines agentic reasoning, reinforcement learning, and dynamic tool use to enhance the capabilities of LLMs. Unlike traditional prompt-based approaches, ARTIST enables models to autonomously plan, adapt, and solve complex tasks by interacting with external tools and environments. It learns effective tool-use strategies without step-by-step supervision, improving accuracy and deeper reasoning. Evaluations on mathematical and function-calling benchmarks show significant performance gains. ARTIST also produces more interpretable reasoning paths and robust behaviors. This work highlights the potential of agentic RL as a promising direction for creating more adaptive and capable AI systems. 


    Check out the Paper. Also, don’t forget to follow us on Twitter.

    Here’s a brief overview of what we’re building at Marktechpost:

    • ML News Community – r/machinelearningnews (92k+ members)
    • Newsletter– airesearchinsights.com/(30k+ subscribers)
    • miniCON AI Events – minicon.marktechpost.com
    • AI Reports & Magazines – magazine.marktechpost.com
    • AI Dev & Research News – marktechpost.com (1M+ monthly readers)
    • Partner with us

    The post Microsoft Researchers Introduce ARTIST: A Reinforcement Learning Framework That Equips LLMs with Agentic Reasoning and Dynamic Tool Use appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleZeroSearch from Alibaba Uses Reinforcement Learning and Simulated Documents to Teach LLMs Retrieval Without Real-Time Search
    Next Article ByteDance Open-Sources DeerFlow: A Modular Multi-Agent Framework for Deep Research Automation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 26, 2025
    Machine Learning

    Using Amazon SageMaker AI Random Cut Forest for NASA’s Blue Origin spacecraft sensor data

    June 26, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Distribution Release: SUSE Linux Enterprise 15 SP7

    News & Updates

    Microsoft Teams Will Soon Let You React with Multiple Emojis Per Message

    Operating Systems

    UXers don’t need to code — but vibe coding might still be worth it

    Web Development

    ASUS warns of critical auth bypass flaw in routers using AiCloud

    Security

    Highlights

    CVE-2025-43567 – Adobe Connect Reflected Cross-Site Scripting (XSS) Vulnerability

    May 13, 2025

    CVE ID : CVE-2025-43567

    Published : May 13, 2025, 9:16 p.m. | 1 hour, 58 minutes ago

    Description : Adobe Connect versions 12.8 and earlier are affected by a reflected Cross-Site Scripting (XSS) vulnerability that could be abused by an attacker to inject malicious scripts into vulnerable form fields. Malicious JavaScript may be executed in a victim’s browser when they browse to the page containing the vulnerable field. A successful attacker can abuse this to achieve session takeover, increasing the confidentiality and integrity impact as high.

    Severity: 9.3 | CRITICAL

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Millions of Windows XP disks secretly included Microsoft’s failed search assistant to keep pirates at bay — “Bob was actually more useful dead than alive”

    Millions of Windows XP disks secretly included Microsoft’s failed search assistant to keep pirates at bay — “Bob was actually more useful dead than alive”

    April 10, 2025

    CVE-2024-56343 – IBM Verify Identity Access Digital Credentials Denial of Service

    June 5, 2025

    CVE-2025-5729 – Code-projects Health Center Patient Record Management System SQL Injection Vulnerability

    June 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.