Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Upwork Freelancers vs Dedicated React.js Teams: What’s Better for Your Project in 2025?

      August 1, 2025

      Is Agile dead in the age of AI?

      August 1, 2025

      Top 15 Enterprise Use Cases That Justify Hiring Node.js Developers in 2025

      July 31, 2025

      The Core Model: Start FROM The Answer, Not WITH The Solution

      July 31, 2025

      Anthropic beats OpenAI as the top LLM provider for business – and it’s not even close

      August 2, 2025

      I bought Samsung’s Galaxy Watch Ultra 2025 – here’s why I have buyer’s remorse

      August 2, 2025

      I can admit when I’m wrong — this 75% wireless gaming keyboard is way better than I thought it would be

      August 2, 2025

      This is Microsoft’s canceled Windows-based Surface Duo — the dual-screen Windows Phone from 2018 that we never got

      August 2, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      August 2, 2025
      Recent

      The details of TC39’s last meeting

      August 2, 2025

      Enhancing Laravel Queries with Reusable Scope Patterns

      August 1, 2025

      Everything We Know About Livewire 4

      August 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      I can admit when I’m wrong — this 75% wireless gaming keyboard is way better than I thought it would be

      August 2, 2025
      Recent

      I can admit when I’m wrong — this 75% wireless gaming keyboard is way better than I thought it would be

      August 2, 2025

      This is Microsoft’s canceled Windows-based Surface Duo — the dual-screen Windows Phone from 2018 that we never got

      August 2, 2025

      Looking for an Ubuntu Manual? Try This Book

      August 2, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Salesforce AI Research Introduces New Benchmarks, Guardrails, and Model Architectures to Advance Trustworthy and Capable AI Agents

    Salesforce AI Research Introduces New Benchmarks, Guardrails, and Model Architectures to Advance Trustworthy and Capable AI Agents

    May 1, 2025

    Salesforce AI Research has outlined a comprehensive roadmap for building more intelligent, reliable, and versatile AI agents. The recent initiative focuses on addressing foundational limitations in current AI systems—particularly their inconsistent task performance, lack of robustness, and challenges in adapting to complex enterprise workflows. By introducing new benchmarks, model architectures, and safety mechanisms, Salesforce is establishing a multi-layered framework to scale agentic systems responsibly.

    Addressing “Jagged Intelligence” Through Targeted Benchmarks

    One of the central challenges highlighted in this research is what Salesforce terms jagged intelligence: the erratic behavior of AI agents across tasks of similar complexity. To systematically diagnose and reduce this problem, the team introduced the SIMPLE benchmark. This dataset contains 225 straightforward, reasoning-oriented questions that humans answer with near-perfect consistency but remain non-trivial for language models. The goal is to reveal gaps in models’ ability to generalize across seemingly uniform problems, particularly in real-world reasoning scenarios.

    Complementing SIMPLE is ContextualJudgeBench, which evaluates an agent’s ability to maintain accuracy and faithfulness in context-specific answers. This benchmark emphasizes not only factual correctness but also the agent’s ability to recognize when to abstain from answering—an important trait for trust-sensitive applications such as legal, financial, and healthcare domains.

    Strengthening Safety and Robustness with Trust Mechanisms

    Recognizing the importance of AI reliability in enterprise settings, Salesforce is expanding its Trust Layer with new safeguards. The SFR-Guard model family has been trained on both open-domain and domain-specific (CRM) data to detect prompt injections, toxic outputs, and hallucinated content. These models serve as dynamic filters, supporting real-time inference with contextual moderation capabilities.

    Another component, CRMArena, is a simulation-based evaluation suite designed to test agent performance under conditions that mimic real CRM workflows. This ensures AI agents can generalize beyond training prompts and operate predictably across varied enterprise tasks.

    Specialized Model Families for Reasoning and Action

    To support more structured, goal-directed behavior in agents, Salesforce introduced two new model families: xLAM and TACO.

    The xLAM (eXtended Language and Action Models) series is optimized for tool use, multi-turn interaction, and function calling. These models vary in scale (from 1B to 200B+ parameters) and are built to support enterprise-grade deployments, where integration with APIs and internal knowledge sources is essential.

    TACO (Thought-and-Action Chain Optimization) models aim to improve agent planning capabilities. By explicitly modeling intermediate reasoning steps and corresponding actions, TACO enhances the agent’s ability to decompose complex goals into sequences of operations. This structure is particularly relevant for use cases like document automation, analytics, and decision support systems.

    Operationalizing Agents via Agentforce

    These capabilities are being unified under Agentforce, Salesforce’s platform for building and deploying autonomous agents. The platform includes a no-code Agent Builder, which allows developers and domain experts to specify agent behaviors and constraints using natural language. Integration with the broader Salesforce ecosystem ensures agents can access customer data, invoke workflows, and remain auditable.

    A study by Valoir found that teams using Agentforce can build production-ready agents 16 times faster compared to traditional software approaches, while improving operational accuracy by up to 75%. Importantly, Agentforce agents are embedded within the Salesforce Trust Layer, inheriting the safety and compliance features required in enterprise contexts.

    Conclusion

    Salesforce’s research agenda reflects a shift toward more deliberate, architecture-aware AI development. By combining targeted evaluations, fine-grained safety models, and purpose-built architectures for reasoning and action, the company is laying the groundwork for next-generation agentic systems. These advances are not only technical but structural—emphasizing reliability, adaptability, and alignment with the nuanced needs of enterprise software.


    Check out the Technical details. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Salesforce AI Research Introduces New Benchmarks, Guardrails, and Model Architectures to Advance Trustworthy and Capable AI Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleDeepSeek-AI Released DeepSeek-Prover-V2: An Open-Source Large Language Model Designed for Formal Theorem, Proving through Subgoal Decomposition and Reinforcement Learning
    Next Article Meta AI Introduces First Version of Its Llama 4-Powered AI App: A Standalone AI Assistant to Rival ChatGPT

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 2, 2025
    Machine Learning

    Meet Trackio: The Free, Local-First, Open-Source Experiment Tracker Python Library that Simplifies and Enhances Machine Learning Workflows

    August 2, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    This app fixes the Windows 11 Start menu, and it now works with Snapdragon PCs

    News & Updates

    Removing Microsoft apps could become easy in Windows 11 25H2

    Operating Systems

    How to Use the SHAP-IQ Package to Uncover and Visualize Feature Interactions in Machine Learning Models Using Shapley Interaction Indices (SII)

    Machine Learning

    CVE-2025-5864 – Tenda TDSEE App Authentication Bypass

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    News & Updates

    Xbox has become a Game Pass machine and nothing more — Is it enough to justify Microsoft’s console over a costly gaming PC?

    May 6, 2025

    I can’t think of many reasons to buy an Xbox over competing platforms when Microsoft…

    CVE-2024-57234 – NETGEAR RAX5 Command Injection Vulnerability

    May 5, 2025

    Take It Down Act Expected to Become Law Despite Concerns

    May 1, 2025

    How to streamline GitHub API calls in Azure Pipelines

    July 24, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.