Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: Functionally, a Date

      September 16, 2025

      Creating Elastic And Bounce Effects With Expressive Animator

      September 16, 2025

      Microsoft shares Insiders preview of Visual Studio 2026

      September 16, 2025

      From Data To Decisions: UX Strategies For Real-Time Dashboards

      September 13, 2025

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Can I use React Server Components (RSCs) today?

      September 16, 2025
      Recent

      Can I use React Server Components (RSCs) today?

      September 16, 2025

      Perficient Named among Notable Providers in Forrester’s Q3 2025 Commerce Services Landscape

      September 16, 2025

      Sarah McDowell Helps Clients Build a Strong AI Foundation Through Salesforce

      September 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      I Ran Local LLMs on My Android Phone

      September 16, 2025
      Recent

      I Ran Local LLMs on My Android Phone

      September 16, 2025

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs

    Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs

    April 30, 2025

    Sparse attention is emerging as a compelling approach to improve the ability of Transformer-based LLMs to handle long sequences. This is particularly important because the standard self-attention mechanism, central to LLMs, scales poorly with sequence length—its computational cost grows quadratically during the prefilling phase, increasing time-to-first-token and making deployment expensive. During the decoding phase, dense attention leads to a cache that expands linearly with the sequence length, resulting in significant memory bandwidth usage for accessing key-value pairs. These inefficiencies pose substantial challenges for both long-context modeling and scaling at inference time.

    Sparse attention attempts to reduce this computational burden by approximating dense attention using only a subset of key-query pairs. This has the potential to significantly accelerate long-sequence processing and reduce memory requirements, while still preserving model accuracy. However, despite its promise, sparse attention has yet to be thoroughly evaluated at scale. Existing studies have only scratched the surface, often focusing on limited model sizes, restricted sequence lengths, and specific applications such as multi-turn dialogue. Furthermore, the datasets used in these studies usually vary in length, making it difficult to analyze how performance scales with longer sequences. As a result, the practical viability and robustness of sparse attention strategies remain underexplored.

    Researchers from the University of Edinburgh, Cohere, and Meta conducted an extensive evaluation of training-free sparse attention methods across various model sizes, sequence lengths, and sparsity levels. Their study involved nine long-context tasks, including new natural language-based benchmarks designed for controlled and realistic testing. Key findings reveal that for long sequences, large, sparse models outperform smaller, dense ones under fixed computational budgets. While higher sparsity is more tolerable during decoding, no single sparse strategy works universally across tasks. They also introduce scaling laws for sparse attention and release standardized implementations to support reproducible research and guide informed deployment decisions.

    Sparse attention aims to reduce computational and memory costs in Transformers by selectively computing only important query–key interactions. This helps speed up full-sequence “prefilling” and reduce memory load during “decoding.” Key techniques include selecting which parts of the attention matrix to retain (e.g., blocks, windows), estimating importance using fixed or dynamic patterns, and allocating computational budgets either uniformly or adaptively across layers and heads. For decoding, methods either evict less useful key–value pairs to conserve memory or maintain the full cache and load only the necessary parts, balancing speed, memory efficiency, and information retention during generation.

    The study investigates sparse attention methods in long-context models, analyzing performance under fixed computational budgets. At shorter sequence lengths (32k tokens), smaller dense models perform more efficiently, while at longer lengths (128k), larger sparse models are preferable. Compression tolerance varies by model size and task, with larger models maintaining performance even at 20× sparsity. However, some tasks remain sensitive to high compression. No single method consistently excels; chunk-based methods, such as Quest, perform best in decoding, while Vertical-Slash works well in prefilling for simple tasks. A log-linear scaling law effectively predicts accuracy trends across model size, sequence length, and compression ratio.

    In conclusion, the study presents a comprehensive evaluation of sparse attention methods across various model sizes (up to 72 billion parameters), sequence lengths (up to 128 kilobytes), and sparsity levels (up to 95%) on diverse long-sequence tasks. It finds that, under fixed compute (isoFLOPS), large sparse models outperform smaller dense ones for long contexts. While high sparsity (10–15×) can retain accuracy, performance drops significantly on some tasks even at moderate compression. The best sparsity strategy varies by task and phase (prefilling versus decoding), highlighting the absence of a universal solution. The authors also propose reliable scaling laws, suggesting sparse attention is promising but requires careful, task-specific application.


    Check out the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Exploring the Sparse Frontier: How Researchers from Edinburgh, Cohere, and Meta Are Rethinking Attention Mechanisms for Long-Context LLMs appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMem0: A Scalable Memory Architecture Enabling Persistent, Structured Recall for Long-Term AI Conversations Across Sessions
    Next Article Build public-facing generative AI applications using Amazon Q Business for anonymous users

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Figma Sites Isn’t the Future

    Web Development

    A Comprehensive Guide to Azure Firewall

    Development

    Microsoft Office Vulnerabilities Let Attackers Execute Remote Code

    Security

    CVE-2025-0855 – WordPress PGS Core Plugin PHP Object Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors Machine Learning

    Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors

    April 8, 2025

    Tactile sensing is a crucial modality for intelligent systems to perceive and interact with the…

    Distribution Release: AlmaLinux OS 9.6

    May 20, 2025

    CVE-2025-3441 – CVE-2022-1234: Adobe Flash Type Confusion Vulnerability

    April 22, 2025

    Free LinkedIn Text Formatter

    May 18, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.