Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Tenable updates Vulnerability Priority Rating scoring method to flag fewer vulnerabilities as critical

      July 24, 2025

      Google adds updated workspace templates in Firebase Studio that leverage new Agent mode

      July 24, 2025

      AI and its impact on the developer experience, or ‘where is the joy?’

      July 23, 2025

      Google launches OSS Rebuild tool to improve trust in open source packages

      July 23, 2025

      EcoFlow’s new portable battery stations are lighter and more powerful (DC plug included)

      July 24, 2025

      7 ways Linux can save you money

      July 24, 2025

      My favorite Kindle tablet just got a kids model, and it makes so much sense

      July 24, 2025

      You can turn your Google Photos into video clips now – here’s how

      July 24, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Blade Service Injection: Direct Service Access in Laravel Templates

      July 24, 2025
      Recent

      Blade Service Injection: Direct Service Access in Laravel Templates

      July 24, 2025

      This Week in Laravel: NativePHP Mobile and AI Guidelines from Spatie

      July 24, 2025

      Retrieve the Currently Executing Closure in PHP 8.5

      July 24, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      FOSS Weekly #25.30: AUR Poisoned, Linux Rising, PPA Explained, New Open Source Grammar Checker and More

      July 24, 2025
      Recent

      FOSS Weekly #25.30: AUR Poisoned, Linux Rising, PPA Explained, New Open Source Grammar Checker and More

      July 24, 2025

      How to Open Control Panel in Windows 11

      July 24, 2025

      How to Shut Down Windows 11

      July 24, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»A Coding Guide to Build an Agentic AI‑Powered Asynchronous Ticketing Assistant Using PydanticAI Agents, Pydantic v2, and SQLite Database

    A Coding Guide to Build an Agentic AI‑Powered Asynchronous Ticketing Assistant Using PydanticAI Agents, Pydantic v2, and SQLite Database

    April 22, 2025

    In this tutorial, we’ll build an end‑to‑end ticketing assistant powered by Agentic AI using the PydanticAI library. We’ll define our data rules with Pydantic v2 models, store tickets in an in‑memory SQLite database, and generate unique identifiers with Python’s uuid module. Behind the scenes, two agents, one for creating tickets and one for checking status, leverage Google Gemini (via PydanticAI’s google-gla provider) to interpret your natural‑language prompts and call our custom database functions. The result is a clean, type‑safe workflow you can run immediately in Colab.

    Copy CodeCopiedUse a different Browser
    !pip install --upgrade pip
    !pip install pydantic-ai

    First, these two commands update your pip installer to the latest version, bringing in new features and security patches, and then install PydanticAI. This library enables the definition of type-safe AI agents and the integration of Pydantic models with LLMs.

    Copy CodeCopiedUse a different Browser
    import os
    from getpass import getpass
    
    
    if "GEMINI_API_KEY" not in os.environ:
        os.environ["GEMINI_API_KEY"] = getpass("Enter your Google Gemini API key: ")

    We check whether the GEMINI_API_KEY environment variable is already set. If not, we securely prompt you (without echoing) to enter your Google Gemini API key at runtime, then store it in os.environ so that your Agentic AI calls can authenticate automatically.

    Copy CodeCopiedUse a different Browser
    !pip install nest_asyncio

    We install the nest_asyncio package, which lets you patch the existing asyncio event loop so that you can call async functions (or use .run_sync()) inside environments like Colab without running into “event loop already running” errors.

    Copy CodeCopiedUse a different Browser
    import sqlite3
    import uuid
    from dataclasses import dataclass
    from typing import Literal
    
    
    from pydantic import BaseModel, Field
    from pydantic_ai import Agent, RunContext

    We bring in Python’s sqlite3 for our in‑memory database and uuid to generate unique ticket IDs, use dataclass and Literal for clear dependency and type definitions, and load Pydantic’s BaseModel/​Field for enforcing data schemas alongside Agent and RunContext from PydanticAI to wire up and run our conversational agents.

    Copy CodeCopiedUse a different Browser
    conn = sqlite3.connect(":memory:")
    conn.execute("""
    CREATE TABLE tickets (
        ticket_id TEXT PRIMARY KEY,
        summary   TEXT NOT NULL,
        severity  TEXT NOT NULL,
        department TEXT NOT NULL,
        status    TEXT NOT NULL
    )
    """)
    conn.commit()
    

    We set up an in‑memory SQLite database and define a tickets table with columns for ticket_id, summary, severity, department, and status, then commit the schema so you have a lightweight, transient store for managing your ticket records.

    Copy CodeCopiedUse a different Browser
    @dataclass
    class TicketingDependencies:
        """Carries our DB connection into system prompts and tools."""
        db: sqlite3.Connection
    
    
    class CreateTicketOutput(BaseModel):
        ticket_id: str = Field(..., description="Unique ticket identifier")
        summary: str   = Field(..., description="Text summary of the issue")
        severity: Literal["low","medium","high"] = Field(..., description="Urgency level")
        department: str = Field(..., description="Responsible department")
        status: Literal["open"] = Field("open", description="Initial ticket status")
    
    
    class TicketStatusOutput(BaseModel):
        ticket_id: str = Field(..., description="Unique ticket identifier")
        status: Literal["open","in_progress","resolved"] = Field(..., description="Current ticket status")

    Here, we define a simple TicketingDependencies dataclass to pass our SQLite connection into each agent call, and then declare two Pydantic models: CreateTicketOutput (with fields for ticket ID, summary, severity, department, and default status “open”) and TicketStatusOutput (with ticket ID and its current status). These models enforce a clear, validated structure on everything our agents return, ensuring you always receive well-formed data.

    Copy CodeCopiedUse a different Browser
    create_agent = Agent(
        "google-gla:gemini-2.0-flash",
        deps_type=TicketingDependencies,
        output_type=CreateTicketOutput,
        system_prompt="You are a ticketing assistant. Use the `create_ticket` tool to log new issues."
    )
    
    
    @create_agent.tool
    async def create_ticket(
        ctx: RunContext[TicketingDependencies],
        summary: str,
        severity: Literal["low","medium","high"],
        department: str
    ) -> CreateTicketOutput:
        """
        Logs a new ticket in the database.
        """
        tid = str(uuid.uuid4())
        ctx.deps.db.execute(
            "INSERT INTO tickets VALUES (?,?,?,?,?)",
            (tid, summary, severity, department, "open")
        )
        ctx.deps.db.commit()
        return CreateTicketOutput(
            ticket_id=tid,
            summary=summary,
            severity=severity,
            department=department,
            status="open"
        )
    

    We create a PydanticAI Agent named’ create_agent’ that’s wired to Google Gemini and is aware of our SQLite connection (deps_type=TicketingDependencies) and output schema (CreateTicketOutput). The @create_agent.tool decorator then registers an async create_ticket function, which generates a UUID, inserts a new row into the tickets table, and returns a validated CreateTicketOutput object.

    Copy CodeCopiedUse a different Browser
    status_agent = Agent(
        "google-gla:gemini-2.0-flash",
        deps_type=TicketingDependencies,
        output_type=TicketStatusOutput,
        system_prompt="You are a ticketing assistant. Use the `get_ticket_status` tool to retrieve current status."
    )
    
    
    @status_agent.tool
    async def get_ticket_status(
        ctx: RunContext[TicketingDependencies],
        ticket_id: str
    ) -> TicketStatusOutput:
        """
        Fetches the ticket status from the database.
        """
        cur = ctx.deps.db.execute(
            "SELECT status FROM tickets WHERE ticket_id = ?", (ticket_id,)
        )
        row = cur.fetchone()
        if not row:
            raise ValueError(f"No ticket found for ID {ticket_id!r}")
        return TicketStatusOutput(ticket_id=ticket_id, status=row[0])

    We set up a second PydanticAI Agent, status_agent, also using the Google Gemini provider and our shared TicketingDependencies. It registers an async get_ticket_status tool that looks up a given ticket_id in the SQLite database and returns a validated TicketStatusOutput, or raises an error if the ticket isn’t found.

    Copy CodeCopiedUse a different Browser
    deps = TicketingDependencies(db=conn)
    
    
    create_result = await create_agent.run(
        "My printer on 3rd floor shows a paper jam error.", deps=deps
    )
    
    
    print("Created Ticket →")
    print(create_result.output.model_dump_json(indent=2))
    
    
    tid = create_result.output.ticket_id
    status_result = await status_agent.run(
        f"What's the status of ticket {tid}?", deps=deps
    )
    
    
    print("Ticket Status →")
    print(status_result.output.model_dump_json(indent=2))

    Finally, we first package your SQLite connection into deps, then ask the create_agent to log a new ticket via a natural‑language prompt, printing the validated ticket data as JSON. It then takes the returned ticket_id, queries the status_agent for that ticket’s current state, and prints the status in JSON form.

    In conclusion, you have seen how Agentic AI and PydanticAI work together to automate a complete service process, from logging a new issue to retrieving its live status, all managed through conversational prompts. Our use of Pydantic v2 ensures every ticket matches the schema you define, while SQLite provides a lightweight backend that’s easy to replace with any database. With these tools in place, you can expand the assistant, adding new agent functions, integrating other AI models like openai:gpt-4o, or connecting real‑world APIs, confident that your data remains structured and reliable throughout.


    Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post A Coding Guide to Build an Agentic AI‑Powered Asynchronous Ticketing Assistant Using PydanticAI Agents, Pydantic v2, and SQLite Database appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleDecoupled Diffusion Transformers: Accelerating High-Fidelity Image Generation via Semantic-Detail Separation and Encoder Sharing
    Next Article Researchers at Physical Intelligence Introduce π-0.5: A New AI Framework for Real-Time Adaptive Intelligence in Physical Systems

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 24, 2025
    Machine Learning

    AI Guardrails and Trustworthy LLM Evaluation: Building Responsible AI Systems

    July 24, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Microsoft Copilot roasts Bill Gates, Satya Nadella, and asks Steve Ballmer if his enthusiasm might ever short-circuit the AI

    News & Updates

    CVE-2025-3954 – ChurchCRM Referer Handler Server-Side Request Forgery Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-6360 – Simple Pizza Ordering System SQL Injection

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-3959 – “Withstars Books-Management-System Cross-Site Request Forgery Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    ASUS Turns NVIDIA’s Grace Blackwell Superchip Into a Desktop AI Beast

    July 22, 2025

    What happens when you take one of NVIDIA’s most advanced server-grade chips and squeeze it…

    This feature makes Copilot feel like your personal AI assistant — here’s how to test it

    This feature makes Copilot feel like your personal AI assistant — here’s how to test it

    April 9, 2025

    CVE-2025-5540 – WordPress Event RSVP and Simple Event Management Plugin Stored Cross-Site Scripting Vulnerability

    June 26, 2025

    CVE-2025-6485 – TOTOLINK A3002R OS Command Injection Vulnerability

    June 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.