Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Underdamped Diffusion Samplers Outperform Traditional Methods: Researchers from Karlsruhe Institute of Technology, NVIDIA, and Zuse Institute Berlin Introduce a New Framework for Efficient Sampling from Complex Distributions with Degenerate Noise

    Underdamped Diffusion Samplers Outperform Traditional Methods: Researchers from Karlsruhe Institute of Technology, NVIDIA, and Zuse Institute Berlin Introduce a New Framework for Efficient Sampling from Complex Distributions with Degenerate Noise

    April 14, 2025

    Diffusion processes have emerged as promising approaches for sampling from complex distributions but face significant challenges when dealing with multimodal targets. Traditional methods based on overdamped Langevin dynamics often exhibit slow convergence rates when navigating between different modes of a distribution. While underdamped Langevin dynamics have shown empirical improvements by introducing an additional momentum variable, fundamental limitations remain. The degenerate noise structure in underdamped models where Brownian motion couples indirectly to the space variable creates smoother paths but complicates theoretical analysis.

    Existing methods like Annealed Importance Sampling (AIS) bridge prior and target distributions using transition kernels, while Unadjusted Langevin Annealing (ULA) implements uncorrected overdamped Langevin dynamics within this framework. Monte Carlo Diffusion (MCD) optimizes targets to minimize marginal likelihood variance, while Controlled Monte Carlo Diffusion (CMCD) and Sequential Controlled Langevin Diffusion (SCLD) focus on kernel optimization with resampling strategies. Other approaches prescribe backward transition kernels, including the Path Integral Sampler (PIS), the Time-Reversed Diffusion Sampler (DIS), and the Denoising Diffusion Sampler (DDS). Some methods, like the Diffusion Bridge Sampler (DBS), learn both forward and backward kernels independently.

    Researchers from the Karlsruhe Institute of Technology, NVIDIA, Zuse Institute Berlin, dida Datenschmiede GmbH, and FZI Research Center for Information Technology have proposed a generalized framework for learning diffusion bridges that transport prior distributions to target distributions. This approach contains both existing diffusion models and underdamped versions with degenerate diffusion matrices where noise affects only specific dimensions. The framework establishes a rigorous theoretical foundation, showing that score-matching in underdamped cases is equivalent to maximizing a likelihood lower bound. This approach addresses the challenge of sampling from unnormalized densities when direct samples from the target distribution are unavailable.

    The framework enables a comparative analysis between five key diffusion-based sampling methods: ULA, MCD, CMCD, DIS, and DBS. The underdamped variants of DIS and DBS represent novel contributions to the field. The evaluation methodology uses a diverse testbed including seven real-world benchmarks covering Bayesian inference tasks (Credit, Cancer, Ionosphere, Sonar), parameter inference problems (Seeds, Brownian), and high-dimensional sampling with Log Gaussian Cox process (LGCP) having 1600 dimensions. Moreover, synthetic benchmarks include the challenging Funnel distribution characterized by regions of vastly different concentration levels, providing a rigorous test for sampling methods across varied dimensionality and complexity profiles.

    The results show that underdamped Langevin dynamics consistently outperform overdamped alternatives across real-world and synthetic benchmarks. The underdamped DBS surpasses competing methods even when using as few as 8 discretization steps. This efficiency translates to significant computational savings while maintaining superior sampling quality. Regarding numerical integration schemes, specialized integrators show marked improvements over classical Euler methods for underdamped dynamics. The OBAB and BAOAB schemes deliver substantial performance gains without extra computational overhead, while the OBABO scheme achieves the best overall results despite requiring double evaluation of control parameters per discretization step.

    In conclusion, this work establishes a comprehensive framework for diffusion bridges that contain degenerate stochastic processes. The underdamped diffusion bridge sampler achieves state-of-the-art results across multiple sampling tasks with minimal hyperparameter tuning and few discretization steps. Thorough ablation studies confirm that the performance improvements stem from the synergistic combination of underdamped dynamics, innovative numerical integrators, simultaneous learning of forward and backward processes, and end-to-end learned hyperparameters. Future directions include benchmarking underdamped diffusion bridges for generative modeling applications using the evidence lower bound (ELBO) derived in Lemma 2.4.


    Check out Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    The post Underdamped Diffusion Samplers Outperform Traditional Methods: Researchers from Karlsruhe Institute of Technology, NVIDIA, and Zuse Institute Berlin Introduce a New Framework for Efficient Sampling from Complex Distributions with Degenerate Noise appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleA Coding Implementation for Advanced Multi-Head Latent Attention and Fine-Grained Expert Segmentation
    Next Article Foundation Models No Longer Need Prompts or Labels: EPFL Researchers Introduce a Joint Inference Framework for Fully Unsupervised Adaptation Using Fine-Tuning and In-Context Learning

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    A Coding Implementation to Build an Advanced Web Intelligence Agent with Tavily and Gemini AI

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    InternLM Research Group Releases InternLM2-Math-Plus: A Series of Math-Focused LLMs in Sizes 1.8B, 7B, 20B, and 8x22B with Enhanced Chain-of-Thought, Code Interpretation, and LEAN 4 Reasoning

    Development

    Less Common HTML Elements and How to Use Them in Your Code

    Development

    TabTreeFormer: Enhancing Synthetic Tabular Data Generation Through Tree-Based Inductive Biases and Dual-Quantization Tokenization

    Machine Learning

    CVE-2025-43556 – Animate Integer Overflow or Wraparound Vulnerability (Arbitrary Code Execution)

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Is Multimodal AI in Finance the Next Strategic Move for Growth?

    April 3, 2025

    The blog discusses how multimodal AI is upscaling the financial sector by integrating diverse data sources to enhance fraud detection, risk management, and customer interactions. From algorithmic trading to real-time market predictions, this technology is shaping the future of finance. Explore its applications, challenges, and the latest trends driving its rapid adoption.
    The post Is Multimodal AI in Finance the Next Strategic Move for Growth? first appeared on TestingXperts.

    Bill Gates predicts “we will all have an AI agent” helping us prioritize what deserves our attention

    March 16, 2025

    Qualtrics bets its new ’empathetic’ AI agents can fix customer service

    March 17, 2025

    AUDio MEasurement System – oscilloscope and spectrum analyzer

    April 29, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.