Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 31, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 31, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 31, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 31, 2025

      How to install SteamOS on ROG Ally and Legion Go Windows gaming handhelds

      May 31, 2025

      Xbox Game Pass just had its strongest content quarter ever, but can we expect this level of quality forever?

      May 31, 2025

      Gaming on a dual-screen laptop? I tried it with Lenovo’s new Yoga Book 9i for 2025 — Here’s what happened

      May 31, 2025

      We got Markdown in Notepad before GTA VI

      May 31, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Oracle Fusion new Product Management Landing Page and AI (25B)

      May 31, 2025
      Recent

      Oracle Fusion new Product Management Landing Page and AI (25B)

      May 31, 2025

      Filament Is Now Running Natively on Mobile

      May 31, 2025

      How Remix is shaking things up

      May 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      How to install SteamOS on ROG Ally and Legion Go Windows gaming handhelds

      May 31, 2025
      Recent

      How to install SteamOS on ROG Ally and Legion Go Windows gaming handhelds

      May 31, 2025

      Xbox Game Pass just had its strongest content quarter ever, but can we expect this level of quality forever?

      May 31, 2025

      Gaming on a dual-screen laptop? I tried it with Lenovo’s new Yoga Book 9i for 2025 — Here’s what happened

      May 31, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3

    THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3

    April 14, 2025

    In the rapidly evolving landscape of large language models (LLMs), researchers and organizations face significant challenges. These include enhancing reasoning abilities, providing robust multilingual support, and efficiently managing complex, open-ended tasks. Although smaller models are often more accessible and cost-effective, they typically fall short in performance when compared to their larger counterparts. Hence, there is a growing emphasis on developing mid-sized models that effectively balance computational efficiency with strong reasoning and instruction-following capabilities.

    The recent release of GLM 4 from Tsinghua University, particularly the GLM-Z1-32B-0414 variant, addresses these challenges effectively. Trained on a substantial dataset of 15 trillion tokens, GLM 4 is designed to offer reliable multilingual capabilities and incorporates innovative reasoning strategies referred to as “thinking mode.” This release positions GLM 4 alongside other notable models like DeepSeek Distill, QwQ, and O1-mini, and is distributed under the widely respected MIT license. Notably, despite its relatively moderate parameter size of 32 billion, GLM 4 demonstrates performance comparable to much larger models such as GPT-4o and DeepSeek-V3, which contain up to 671 billion parameters, particularly in reasoning-centric benchmarks.

    On a technical level, GLM-Z1-32B-0414 leverages extensive high-quality training data, including synthetically generated reasoning tasks, to strengthen analytical capabilities. The model integrates sophisticated techniques such as rejection sampling and reinforcement learning (RL) to improve performance in agent-based tasks, coding, function calling, and search-driven question-answering tasks. Additionally, its “Deep Reasoning Model” variation further refines this by employing cold-start methods combined with extended RL training, specifically targeted at complex mathematical, logical, and coding tasks. Pairwise ranking feedback mechanisms are employed during training to enhance the model’s general reasoning effectiveness.

    An advanced variant, GLM-Z1-Rumination-32B-0414, introduces a novel approach termed “rumination,” enabling prolonged reflective reasoning for tackling open-ended, complex queries like comparative AI-driven urban analysis. This variant integrates advanced search tools with multi-objective reinforcement learning, significantly enhancing its utility in research-intensive tasks and complex retrieval-based scenarios. Complementing these larger models, the GLM-Z1-9B-0414 version, with its 9 billion parameters, provides strong mathematical and general reasoning capabilities, demonstrating the practicality of smaller-scale models.

    Performance data from benchmark evaluations emphasize the strengths of the GLM 4 series. Specifically, GLM-4-32B-0414 shows robust results compared to GPT-4o, DeepSeek-V3, and Qwen2.5-Max across multiple benchmarks. On the IFEval instruction-following benchmark, GLM 4 scores an impressive 87.6. In task automation benchmarks such as TAU-Bench, GLM 4 achieves strong scores in scenarios like retail (68.7) and airline (51.2). For search-augmented question-answering tasks, as evaluated by SimpleQA, the model records a high score of 88.1. Additionally, GLM 4 closely matches GPT-4o’s performance in function-calling tasks evaluated by the BFCL-v3 benchmark, securing an overall score of 69.6. In practical code repair scenarios tested through SWE-bench with the Moatless framework, GLM 4 achieves a success rate of 33.8%, underscoring its practical value.

    Hostinger

    In summary, GLM 4 presents itself as an effective family of language models, successfully bridging the performance gap between smaller, more accessible models and the traditionally superior larger-scale counterparts. The GLM-Z1 series, especially the 32B variant, exemplifies this balanced approach by providing powerful reasoning capabilities while maintaining computational affordability. With the added advantage of its permissive MIT license, GLM 4 is positioned as a robust tool for research and enterprise applications requiring high-performance AI solutions without the extensive computational overhead traditionally associated with larger models.


    Check out GLM-4-Z1-32B-0414 Model and Other Models. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post THUDM Releases GLM 4: A 32B Parameter Model Competing Head-to-Head with GPT-4o and DeepSeek-V3 appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUbuntu MATE 25.04 Release Notes
    Next Article Multimodal Models Don’t Need Late Fusion: Apple Researchers Show Early-Fusion Architectures are more Scalable, Efficient, and Modality-Agnostic

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 31, 2025
    Machine Learning

    Multimodal Foundation Models Fall Short on Physical Reasoning: PHYX Benchmark Highlights Key Limitations in Visual and Symbolic Integration

    May 31, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-37811 – “Qualcomm Chipidea USB Driver Null Pointer Dereference”

    Common Vulnerabilities and Exposures (CVEs)

    Debian 13 “Trixie”: Scopri il Nuovo Installer e le Altre Innovazioni della Prossima Versione di Debian

    Development

    Implement serverless semantic search of image and live video with Amazon Titan Multimodal Embeddings

    Development

    Adobe updates free AI education tool for K-12 classrooms

    Development

    Highlights

    Solving the Top 6 Mobile Automation Challenges Fast (DevAssure Guide)

    March 16, 2025

    Test Guild – Automation Testing Tools Community
    Solving the Top 6 Mobile Automation Challenges Fast (DevAssure Guide)
    Are you tired of struggling with the mobile test automation setups? Does managing devices and maintaining separate Android and iOS test suites consume too much of your valuable time? You’re not alone. In our annual TestGuild community survey, 44% of our members are using mobile testing and 53% of them are facing important issues with
    You’re reading Solving the Top 6 Mobile Automation Challenges Fast (DevAssure Guide), originally posted on Test Guild – Automation Testing Tools Community – and copyrighted by Joe Colantonio

    Easily deploy and manage hundreds of LoRA adapters with SageMaker efficient multi-adapter inference

    November 29, 2024

    termcolor – ANSI color formatting for output in the terminal

    December 15, 2024

    Privacy-Computation Trade-offs in Private Repetition and Metaselection

    January 9, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.