Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Microsoft Graph CLI to be retired

      September 2, 2025

      The state of DevOps and AI: Not just hype

      September 1, 2025

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      I asked AI to modify mission-critical code, and what happened next haunts me

      September 3, 2025

      Why you should delete your browser extensions right now – or do this to stay safe

      September 3, 2025

      Dolby Vision 2 comes with big upgrades – here’s which TVs get them first

      September 3, 2025

      This one small feature makes this travel charger my favorite for business trips

      September 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Laracon AU 2025 Talk Titles Revealed

      September 3, 2025
      Recent

      Laracon AU 2025 Talk Titles Revealed

      September 3, 2025

      Stop Writing Bad Controllers: Laravel Custom Collections Transform Your Code

      September 3, 2025

      Handle ownership relationships between Eloquent models with Laravel Ownable

      September 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Lenovo Legion Go 2 confirmed with Ryzen Z2 Extreme, 1200p OLED 144Hz display & 74Wh battery

      September 2, 2025
      Recent

      Lenovo Legion Go 2 confirmed with Ryzen Z2 Extreme, 1200p OLED 144Hz display & 74Wh battery

      September 2, 2025

      How to Open Ports in Firewall on Windows Server

      September 2, 2025

      Google TV Remote Not Working? 5 Quick Fixes

      September 2, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Foundation Models No Longer Need Prompts or Labels: EPFL Researchers Introduce a Joint Inference Framework for Fully Unsupervised Adaptation Using Fine-Tuning and In-Context Learning

    Foundation Models No Longer Need Prompts or Labels: EPFL Researchers Introduce a Joint Inference Framework for Fully Unsupervised Adaptation Using Fine-Tuning and In-Context Learning

    April 14, 2025

    Foundation models, often massive neural networks trained on extensive text and image data, have significantly shifted how artificial intelligence systems handle language and vision tasks. These models are not designed for a single task but generalize across a wide variety by leveraging their pretraining knowledge. Once trained, they can generate coherent responses, classify images, or solve problems without needing new task-specific training. Their scalability and reuse across domains make them a cornerstone of AI development.

    Despite their broad capabilities, a persistent issue lies in how these models are adapted for new, unseen tasks. In most scenarios, achieving strong performance requires providing them with handcrafted prompts or labeled examples that guide the model on how to behave. This process, however, introduces overhead, as crafting prompts involves trial and error, and collecting labeled examples can be expensive and time-consuming. Moreover, in real-world applications, such support data may not always be readily available, limiting the usability of foundation models in zero-shot settings.

    Several strategies have been used to bridge this gap between generality and task-specific performance. In-context learning enables models to mimic a task by including example input-output pairs during inference, while supervised fine-tuning adjusts model weights using labeled data. Another method, prompt engineering, involves crafting prompts that steer the model toward desired outputs. Though these tools have been successful in boosting performance, each relies on external support—either human input or labeled data—making them less viable in completely unsupervised settings.

    Swiss Federal Institute of Technology Lausanne (EPFL) researchers introduced a joint inference framework that supports unsupervised adaptation. This framework enables foundation models to perform coordinated predictions over multiple inputs without requiring ground truth data or manual prompts. The research team presented two specific techniques under this framework: unsupervised fine-tuning and unsupervised in-context learning. These methods allow models, including closed-weight ones like GPT-4, to improve accuracy without external guidance.

    The approach of unsupervised fine-tuning works by letting the model iteratively improve its predictions using only its feedback. It formulates an optimization objective where predictions for a batch of inputs are generated together, and their joint probability is maximized. This method uses LoRA (Low-Rank Adaptation) for efficient weight updates and introduces a regularization step to avoid trivial solutions, such as predicting the same answer for all inputs. The researchers developed unsupervised in-context learning for situations where weight access isn’t available, such as with GPT-4. This method mimics the effect of labeled ICL by using previously generated outputs as pseudo-labels, refining predictions over multiple iterations without human annotations. Each iteration involves conditioning the model on prior examples and developing a more accurate answer, simulating a supervised learning loop through self-generated data.

    The performance improvements from these unsupervised methods were substantial. On the GSM8K dataset, designed for math reasoning, unsupervised ICL applied to the Qwen2.5-Math model achieved a 39.2% absolute improvement over the standard zero-shot baseline. Similarly, for the Llama-3.1-8B model tested across 13 natural language processing tasks, unsupervised fine-tuning delivered a 23% average gain in accuracy. It matched the performance of fully supervised fine-tuning in 6 out of the 13 tasks. In vision-language tasks, unsupervised ICL also demonstrated strong results—showing a 23% gain on the Food101 dataset and significant improvements across other benchmarks. The research even extended to GPT-4o, a closed-weight model, where a 3% improvement was observed on ImageNet, reinforcing the framework’s versatility.

    This work reveals a meaningful shift in how foundation models can adapt. The researchers successfully addressed the core limitation—reliance on labeled data and manual configuration—by introducing a robust and scalable self-supervised strategy. Their joint inference framework is a practical, generalizable approach that redefines the boundaries of unsupervised learning for large-scale AI models.


    Check out Paper and Project. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    The post Foundation Models No Longer Need Prompts or Labels: EPFL Researchers Introduce a Joint Inference Framework for Fully Unsupervised Adaptation Using Fine-Tuning and In-Context Learning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUnderdamped Diffusion Samplers Outperform Traditional Methods: Researchers from Karlsruhe Institute of Technology, NVIDIA, and Zuse Institute Berlin Introduce a New Framework for Efficient Sampling from Complex Distributions with Degenerate Noise
    Next Article Flutter vs React Native for Mobile Apps: What Laravel Devs Say in 2025

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-46522 – Billy Bryant Tabs CSRF Stored XSS

    Common Vulnerabilities and Exposures (CVEs)

    Tesla Model 3 VCSEC Vulnerability Allows Attackers to Execute Arbitrary Code

    Security

    Reasoning Models Know When They’re Right: NYU Researchers Introduce a Hidden-State Probe That Enables Efficient Self-Verification and Reduces Token Usage by 24%

    Machine Learning

    4 ways to level up your gaming on Linux, starting with the right distro

    News & Updates

    Highlights

    News & Updates

    Error’d: It’s Getting Hot in Here

    July 25, 2025

    Or cold. It’s getting hot and cold. But on average… no. It’s absolutely unbelievable. “There’s…

    New Rust Botnet Hijacking Routers to Inject Commands Remotely

    April 22, 2025

    CVE-2025-54066 – DiracX-Web Redirect Hijacking Vulnerability

    July 17, 2025

    CVE-2025-5032 – Campcodes Online Shopping Portal SQL Injection Vulnerability

    May 21, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.