Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Slack’s AI search now works across an organization’s entire knowledge base

      July 17, 2025

      In-House vs Outsourcing for React.js Development: Understand What Is Best for Your Enterprise

      July 17, 2025

      Tiny Screens, Big Impact: The Forgotten Art Of Developing Web Apps For Feature Phones

      July 16, 2025

      Kong AI Gateway 3.11 introduces new method for reducing token costs

      July 16, 2025

      Researchers from OpenAI, Anthropic, Meta, and Google issue joint AI safety warning – here’s why

      July 17, 2025

      You’ll soon be able to chat with Copilot and attend Teams meetings while driving your Mercedes-Benz — now there’s no excuse to miss your meetings

      July 17, 2025

      Intel is laying off thousands of US workers in AI restructuring — CEO Lip-Bu Tan says it’s “too late” to catch up with the competition

      July 17, 2025

      Elon Musk says “We need more babies” — then creates digital girlfriends so you actually won’t go out and make any babies

      July 17, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Tinkerwell v5 is now released

      July 17, 2025
      Recent

      Tinkerwell v5 is now released

      July 17, 2025

      The details of TC39’s last meeting

      July 17, 2025

      Perficient Honored as a 2025 Technology Top Workplaces Winner

      July 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      You’ll soon be able to chat with Copilot and attend Teams meetings while driving your Mercedes-Benz — now there’s no excuse to miss your meetings

      July 17, 2025
      Recent

      You’ll soon be able to chat with Copilot and attend Teams meetings while driving your Mercedes-Benz — now there’s no excuse to miss your meetings

      July 17, 2025

      Intel is laying off thousands of US workers in AI restructuring — CEO Lip-Bu Tan says it’s “too late” to catch up with the competition

      July 17, 2025

      Elon Musk says “We need more babies” — then creates digital girlfriends so you actually won’t go out and make any babies

      July 17, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch

    Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch

    April 12, 2025

    This tutorial will walk you through using PyTorch to implement a Neural Collaborative Filtering (NCF) recommendation system. NCF extends traditional matrix factorisation by using neural networks to model complex user-item interactions.

    Introduction

    Neural Collaborative Filtering (NCF) is a state-of-the-art approach for building recommendation systems. Unlike traditional collaborative filtering methods that rely on linear models, NCF utilizes deep learning to capture non-linear relationships between users and items.

    In this tutorial, we’ll:

    1. Prepare and explore the MovieLens dataset
    2. Implement the NCF model architecture
    3. Train the model
    4. Evaluate its performance
    5. Generate recommendations for users

    Setup and Environment

    First, let’s install the necessary libraries and import them:

    Copy CodeCopiedUse a different Browser
    !pip install torch numpy pandas matplotlib seaborn scikit-learn tqdm
    
    
    import os
    import numpy as np
    import pandas as pd
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.utils.data import Dataset, DataLoader
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder
    from tqdm import tqdm
    import random
    
    
    
    
    torch.manual_seed(42)
    np.random.seed(42)
    random.seed(42)
    
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    Data Loading and Preparation

    We’ll use the MovieLens 100K dataset, which contains 100,000 movie ratings from users:

    Copy CodeCopiedUse a different Browser
    !wget -nc https://files.grouplens.org/datasets/movielens/ml-100k.zip
    !unzip -q -n ml-100k.zip
    
    
    ratings_df = pd.read_csv('ml-100k/u.data', sep='t', names=['user_id', 'item_id', 'rating', 'timestamp'])
    
    
    movies_df = pd.read_csv('ml-100k/u.item', sep='|', encoding='latin-1',
                           names=['item_id', 'title', 'release_date', 'video_release_date',
                                  'IMDb_URL', 'unknown', 'Action', 'Adventure', 'Animation',
                                  'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
                                  'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi',
                                  'Thriller', 'War', 'Western'])
    
    
    print("Ratings data:")
    print(ratings_df.head())
    
    
    print("nMovies data:")
    print(movies_df[['item_id', 'title']].head())
    
    
    
    
    print(f"nTotal number of ratings: {len(ratings_df)}")
    print(f"Number of unique users: {ratings_df['user_id'].nunique()}")
    print(f"Number of unique movies: {ratings_df['item_id'].nunique()}")
    print(f"Rating range: {ratings_df['rating'].min()} to {ratings_df['rating'].max()}")
    print(f"Average rating: {ratings_df['rating'].mean():.2f}")
    
    
    
    
    plt.figure(figsize=(10, 6))
    sns.countplot(x='rating', data=ratings_df)
    plt.title('Distribution of Ratings')
    plt.xlabel('Rating')
    plt.ylabel('Count')
    plt.show()
    
    
    ratings_df['label'] = (ratings_df['rating'] >= 4).astype(np.float32)

    Data Preparation for NCF

    Now, let’s prepare the data for our NCF model:

    Copy CodeCopiedUse a different Browser
    train_df, test_df = train_test_split(ratings_df, test_size=0.2, random_state=42)
    
    
    print(f"Training set size: {len(train_df)}")
    print(f"Test set size: {len(test_df)}")
    
    
    num_users = ratings_df['user_id'].max()
    num_items = ratings_df['item_id'].max()
    
    
    print(f"Number of users: {num_users}")
    print(f"Number of items: {num_items}")
    
    
    class NCFDataset(Dataset):
       def __init__(self, df):
           self.user_ids = torch.tensor(df['user_id'].values, dtype=torch.long)
           self.item_ids = torch.tensor(df['item_id'].values, dtype=torch.long)
           self.labels = torch.tensor(df['label'].values, dtype=torch.float)
          
       def __len__(self):
           return len(self.user_ids)
      
       def __getitem__(self, idx):
           return {
               'user_id': self.user_ids[idx],
               'item_id': self.item_ids[idx],
               'label': self.labels[idx]
           }
    
    
    train_dataset = NCFDataset(train_df)
    test_dataset = NCFDataset(test_df)
    
    
    batch_size = 256
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    Model Architecture

    Now we’ll implement the Neural Collaborative Filtering (NCF) model, which combines Generalized Matrix Factorization (GMF) and Multi-Layer Perceptron (MLP) components:

    Copy CodeCopiedUse a different Browser
    class NCF(nn.Module):
       def __init__(self, num_users, num_items, embedding_dim=32, mlp_layers=[64, 32, 16]):
           super(NCF, self).__init__() 
    
    
           self.user_embedding_gmf = nn.Embedding(num_users + 1, embedding_dim)
           self.item_embedding_gmf = nn.Embedding(num_items + 1, embedding_dim)
    
    
           self.user_embedding_mlp = nn.Embedding(num_users + 1, embedding_dim)
           self.item_embedding_mlp = nn.Embedding(num_items + 1, embedding_dim)
          
           mlp_input_dim = 2 * embedding_dim
           self.mlp_layers = nn.ModuleList()
           for idx, layer_size in enumerate(mlp_layers):
               if idx == 0:
                   self.mlp_layers.append(nn.Linear(mlp_input_dim, layer_size))
               else:
                   self.mlp_layers.append(nn.Linear(mlp_layers[idx-1], layer_size))
               self.mlp_layers.append(nn.ReLU())
    
    
           self.output_layer = nn.Linear(embedding_dim + mlp_layers[-1], 1)
           self.sigmoid = nn.Sigmoid()
    
    
           self._init_weights()
      
       def _init_weights(self):
           for m in self.modules():
               if isinstance(m, nn.Embedding):
                   nn.init.normal_(m.weight, mean=0.0, std=0.01)
               elif isinstance(m, nn.Linear):
                   nn.init.kaiming_uniform_(m.weight)
                   if m.bias is not None:
                       nn.init.zeros_(m.bias)
      
       def forward(self, user_ids, item_ids):
           user_embedding_gmf = self.user_embedding_gmf(user_ids)
           item_embedding_gmf = self.item_embedding_gmf(item_ids)
           gmf_vector = user_embedding_gmf * item_embedding_gmf
          
           user_embedding_mlp = self.user_embedding_mlp(user_ids)
           item_embedding_mlp = self.item_embedding_mlp(item_ids)
           mlp_vector = torch.cat([user_embedding_mlp, item_embedding_mlp], dim=-1)
    
    
           for layer in self.mlp_layers:
               mlp_vector = layer(mlp_vector)
    
    
           concat_vector = torch.cat([gmf_vector, mlp_vector], dim=-1)
    
    
           prediction = self.sigmoid(self.output_layer(concat_vector)).squeeze()
          
           return prediction
    
    
    embedding_dim = 32
    mlp_layers = [64, 32, 16]
    model = NCF(num_users, num_items, embedding_dim, mlp_layers).to(device)
    
    
    print(model)

    Training the Model

    Let’s train our NCF model:

    Copy CodeCopiedUse a different Browser
    criterion = nn.BCELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
    
    
    def train_epoch(model, data_loader, criterion, optimizer, device):
       model.train()
       total_loss = 0
       for batch in tqdm(data_loader, desc="Training"):
           user_ids = batch['user_id'].to(device)
           item_ids = batch['item_id'].to(device)
           labels = batch['label'].to(device)
          
           optimizer.zero_grad()
           outputs = model(user_ids, item_ids)
           loss = criterion(outputs, labels)
          
           loss.backward()
           optimizer.step()
          
           total_loss += loss.item()
      
       return total_loss / len(data_loader)
    
    
    def evaluate(model, data_loader, criterion, device):
       model.eval()
       total_loss = 0
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in tqdm(data_loader, desc="Evaluating"):
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
               loss = criterion(outputs, labels)
               total_loss += loss.item()
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       from sklearn.metrics import roc_auc_score, average_precision_score
       auc = roc_auc_score(true_labels, predictions)
       ap = average_precision_score(true_labels, predictions)
      
       return {
           'loss': total_loss / len(data_loader),
           'auc': auc,
           'ap': ap
       }
    
    
    num_epochs = 10
    history = {'train_loss': [], 'val_loss': [], 'val_auc': [], 'val_ap': []}
    
    
    for epoch in range(num_epochs):
       train_loss = train_epoch(model, train_loader, criterion, optimizer, device)
      
       eval_metrics = evaluate(model, test_loader, criterion, device)
      
       history['train_loss'].append(train_loss)
       history['val_loss'].append(eval_metrics['loss'])
       history['val_auc'].append(eval_metrics['auc'])
       history['val_ap'].append(eval_metrics['ap'])
      
       print(f"Epoch {epoch+1}/{num_epochs} - "
             f"Train Loss: {train_loss:.4f}, "
             f"Val Loss: {eval_metrics['loss']:.4f}, "
             f"AUC: {eval_metrics['auc']:.4f}, "
             f"AP: {eval_metrics['ap']:.4f}")
    
    
    plt.figure(figsize=(12, 4))
    
    
    plt.subplot(1, 2, 1)
    plt.plot(history['train_loss'], label='Train Loss')
    plt.plot(history['val_loss'], label='Validation Loss')
    plt.title('Loss During Training')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    
    
    plt.subplot(1, 2, 2)
    plt.plot(history['val_auc'], label='AUC')
    plt.plot(history['val_ap'], label='Average Precision')
    plt.title('Evaluation Metrics')
    plt.xlabel('Epoch')
    plt.ylabel('Score')
    plt.legend()
    
    
    plt.tight_layout()
    plt.show()
    
    
    torch.save(model.state_dict(), 'ncf_model.pth')
    print("Model saved successfully!")

    Generating Recommendations

    Now let’s create a function to generate recommendations for users:

    Copy CodeCopiedUse a different Browser
    def generate_recommendations(model, user_id, n=10):
       model.eval()
       user_ids = torch.tensor([user_id] * num_items, dtype=torch.long).to(device)
       item_ids = torch.tensor(range(1, num_items + 1), dtype=torch.long).to(device)
      
       with torch.no_grad():
           predictions = model(user_ids, item_ids).cpu().numpy()
      
       items_df = pd.DataFrame({
           'item_id': range(1, num_items + 1),
           'score': predictions
       })
      
       user_rated_items = set(ratings_df[ratings_df['user_id'] == user_id]['item_id'].values)
      
       items_df = items_df[~items_df['item_id'].isin(user_rated_items)]
      
       top_n_items = items_df.sort_values('score', ascending=False).head(n)
      
       recommendations = pd.merge(top_n_items, movies_df[['item_id', 'title']], on='item_id')
      
       return recommendations[['item_id', 'title', 'score']]
    
    
    test_users = [1, 42, 100]
    
    
    for user_id in test_users:
       print(f"nTop 10 recommendations for user {user_id}:")
       recommendations = generate_recommendations(model, user_id, n=10)
       print(recommendations)
      
       print(f"nMovies that user {user_id} has rated highly (4-5 stars):")
       user_liked = ratings_df[(ratings_df['user_id'] == user_id) & (ratings_df['rating'] >= 4)]
       user_liked = pd.merge(user_liked, movies_df[['item_id', 'title']], on='item_id')
       user_liked[['item_id', 'title', 'rating']]

    Evaluating the Model Further

    Let’s evaluate our model further by computing some additional metrics:

    Copy CodeCopiedUse a different Browser
    def evaluate_model_with_metrics(model, test_loader, device):
       model.eval()
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in tqdm(test_loader, desc="Evaluating"):
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       from sklearn.metrics import roc_auc_score, average_precision_score, precision_recall_curve, accuracy_score
      
       binary_preds = [1 if p >= 0.5 else 0 for p in predictions]
      
       auc = roc_auc_score(true_labels, predictions)
       ap = average_precision_score(true_labels, predictions)
       accuracy = accuracy_score(true_labels, binary_preds)
      
       precision, recall, thresholds = precision_recall_curve(true_labels, predictions)
      
       plt.figure(figsize=(10, 6))
       plt.plot(recall, precision, label=f'AP={ap:.3f}')
       plt.xlabel('Recall')
       plt.ylabel('Precision')
       plt.title('Precision-Recall Curve')
       plt.legend()
       plt.grid(True)
       plt.show()
      
       return {
           'auc': auc,
           'ap': ap,
           'accuracy': accuracy
       }
    
    
    metrics = evaluate_model_with_metrics(model, test_loader, device)
    print(f"AUC: {metrics['auc']:.4f}")
    print(f"Average Precision: {metrics['ap']:.4f}")
    print(f"Accuracy: {metrics['accuracy']:.4f}")

    Cold Start Analysis

    Let’s analyze how our model performs for new users or users with few ratings (cold start problem):

    Copy CodeCopiedUse a different Browser
    user_rating_counts = ratings_df.groupby('user_id').size().reset_index(name='count')
    user_rating_counts['group'] = pd.cut(user_rating_counts['count'],
                                       bins=[0, 10, 50, 100, float('inf')],
                                       labels=['1-10', '11-50', '51-100', '100+'])
    
    
    print("Number of users in each rating frequency group:")
    print(user_rating_counts['group'].value_counts())
    
    
    def evaluate_by_user_group(model, ratings_df, user_groups, device):
       results = {}
      
       for group_name, user_ids in user_groups.items():
           group_ratings = ratings_df[ratings_df['user_id'].isin(user_ids)]
          
           group_dataset = NCFDataset(group_ratings)
           group_loader = DataLoader(group_dataset, batch_size=256, shuffle=False)
          
           if len(group_loader) == 0:
               continue
          
           model.eval()
           predictions = []
           true_labels = []
          
           with torch.no_grad():
               for batch in group_loader:
                   user_ids = batch['user_id'].to(device)
                   item_ids = batch['item_id'].to(device)
                   labels = batch['label'].to(device)
                  
                   outputs = model(user_ids, item_ids)
                  
                   predictions.extend(outputs.cpu().numpy())
                   true_labels.extend(labels.cpu().numpy())
          
           from sklearn.metrics import roc_auc_score
           try:
               auc = roc_auc_score(true_labels, predictions)
               results[group_name] = auc
           except:
               results[group_name] = None
      
       return results
    
    
    user_groups = {}
    for group in user_rating_counts['group'].unique():
       users_in_group = user_rating_counts[user_rating_counts['group'] == group]['user_id'].values
       user_groups[group] = users_in_group
    
    
    group_performance = evaluate_by_user_group(model, test_df, user_groups, device)
    
    
    plt.figure(figsize=(10, 6))
    groups = []
    aucs = []
    
    
    for group, auc in group_performance.items():
       if auc is not None:
           groups.append(group)
           aucs.append(auc)
    
    
    plt.bar(groups, aucs)
    plt.xlabel('Number of Ratings per User')
    plt.ylabel('AUC Score')
    plt.title('Model Performance by User Rating Frequency (Cold Start Analysis)')
    plt.ylim(0.5, 1.0)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.show()
    
    
    print("AUC scores by user rating frequency:")
    for group, auc in group_performance.items():
       if auc is not None:
           print(f"{group}: {auc:.4f}")

    Business Insights and Extensions

    Copy CodeCopiedUse a different Browser
    def analyze_predictions(model, data_loader, device):
       model.eval()
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in data_loader:
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       results_df = pd.DataFrame({
           'true_label': true_labels,
           'predicted_score': predictions
       })
      
       plt.figure(figsize=(12, 6))
      
       plt.subplot(1, 2, 1)
       sns.histplot(results_df['predicted_score'], bins=30, kde=True)
       plt.title('Distribution of Predicted Scores')
       plt.xlabel('Predicted Score')
       plt.ylabel('Count')
      
       plt.subplot(1, 2, 2)
       sns.boxplot(x='true_label', y='predicted_score', data=results_df)
       plt.title('Predicted Scores by True Label')
       plt.xlabel('True Label (0=Disliked, 1=Liked)')
       plt.ylabel('Predicted Score')
      
       plt.tight_layout()
       plt.show()
      
       avg_scores = results_df.groupby('true_label')['predicted_score'].mean()
       print("Average prediction scores:")
       print(f"Items user disliked (0): {avg_scores[0]:.4f}")
       print(f"Items user liked (1): {avg_scores[1]:.4f}")
    
    
    analyze_predictions(model, test_loader, device)

    This tutorial demonstrates implementing Neural Collaborative Filtering, a deep learning recommendation system combining matrix factorization with neural networks. Using the MovieLens dataset and PyTorch, we built a model that generates personalized content recommendations. The implementation addresses key challenges, including the cold start problem and provides performance metrics like AUC and precision-recall curves. This foundation can be extended with hybrid approaches, attention mechanisms, or deployable web applications for various business recommendation scenarios.


    Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 85k+ ML SubReddit.

    The post Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleZenless Zone Zero’s Xbox release date has finally been announced to the world
    Next Article Moonsight AI Released Kimi-VL: A Compact and Powerful Vision-Language Model Series Redefining Multimodal Reasoning, Long-Context Understanding, and High-Resolution Visual Processing

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 17, 2025
    Machine Learning

    Building enterprise-scale RAG applications with Amazon S3 Vectors and DeepSeek R1 on Amazon SageMaker AI

    July 17, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Stolen faces, stolen lives: The disturbing trend of AI-powered exploitation

    Artificial Intelligence

    CVE-2025-2595 – CODESYS Visualization Forced Browsing Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-46420 – Libsoup Memory Leak Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Command-Line Screen Capture Tools: 7 Free and Open Source Linux Apps

    Linux

    Highlights

    The Role of UI/UX Design in Cybersecurity

    April 3, 2025

    Cybersecurity is no longer just about firewalls and encryption. Design plays a crucial role in…

    CVE-2022-44609 – Apache HTTP Server Remote Code Execution

    May 28, 2025

    CVE-2025-52486 – DNN TokenReplace URL Sanitation Vulnerability

    June 21, 2025

    CVE-2025-40665 – TCMAN GIM Blind SQL Injection

    May 26, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.