Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The state of DevOps and AI: Not just hype

      September 1, 2025

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      Prompting Is A Design Act: How To Brief, Guide And Iterate With AI

      August 29, 2025

      Look out, Meta Ray-Bans! These AI glasses just raised over $1M in pre-orders in 3 days

      September 2, 2025

      Samsung ‘Galaxy Glasses’ powered by Android XR are reportedly on track to be unveiled this month

      September 2, 2025

      The M4 iPad Pro is discounted $100 as a last-minute Labor Day deal

      September 2, 2025

      Distribution Release: Linux From Scratch 12.4

      September 1, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025
      Recent

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025

      August report 2025

      September 2, 2025

      Fake News Detection using Python Machine Learning (ML)

      September 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025
      Recent

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025

      Download Transcribe! for Windows

      September 1, 2025

      Microsoft Fixes CertificateServicesClient (CertEnroll) Error in Windows 11

      September 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch

    Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch

    April 12, 2025

    This tutorial will walk you through using PyTorch to implement a Neural Collaborative Filtering (NCF) recommendation system. NCF extends traditional matrix factorisation by using neural networks to model complex user-item interactions.

    Introduction

    Neural Collaborative Filtering (NCF) is a state-of-the-art approach for building recommendation systems. Unlike traditional collaborative filtering methods that rely on linear models, NCF utilizes deep learning to capture non-linear relationships between users and items.

    In this tutorial, we’ll:

    1. Prepare and explore the MovieLens dataset
    2. Implement the NCF model architecture
    3. Train the model
    4. Evaluate its performance
    5. Generate recommendations for users

    Setup and Environment

    First, let’s install the necessary libraries and import them:

    Copy CodeCopiedUse a different Browser
    !pip install torch numpy pandas matplotlib seaborn scikit-learn tqdm
    
    
    import os
    import numpy as np
    import pandas as pd
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.utils.data import Dataset, DataLoader
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder
    from tqdm import tqdm
    import random
    
    
    
    
    torch.manual_seed(42)
    np.random.seed(42)
    random.seed(42)
    
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    Data Loading and Preparation

    We’ll use the MovieLens 100K dataset, which contains 100,000 movie ratings from users:

    Copy CodeCopiedUse a different Browser
    !wget -nc https://files.grouplens.org/datasets/movielens/ml-100k.zip
    !unzip -q -n ml-100k.zip
    
    
    ratings_df = pd.read_csv('ml-100k/u.data', sep='t', names=['user_id', 'item_id', 'rating', 'timestamp'])
    
    
    movies_df = pd.read_csv('ml-100k/u.item', sep='|', encoding='latin-1',
                           names=['item_id', 'title', 'release_date', 'video_release_date',
                                  'IMDb_URL', 'unknown', 'Action', 'Adventure', 'Animation',
                                  'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
                                  'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi',
                                  'Thriller', 'War', 'Western'])
    
    
    print("Ratings data:")
    print(ratings_df.head())
    
    
    print("nMovies data:")
    print(movies_df[['item_id', 'title']].head())
    
    
    
    
    print(f"nTotal number of ratings: {len(ratings_df)}")
    print(f"Number of unique users: {ratings_df['user_id'].nunique()}")
    print(f"Number of unique movies: {ratings_df['item_id'].nunique()}")
    print(f"Rating range: {ratings_df['rating'].min()} to {ratings_df['rating'].max()}")
    print(f"Average rating: {ratings_df['rating'].mean():.2f}")
    
    
    
    
    plt.figure(figsize=(10, 6))
    sns.countplot(x='rating', data=ratings_df)
    plt.title('Distribution of Ratings')
    plt.xlabel('Rating')
    plt.ylabel('Count')
    plt.show()
    
    
    ratings_df['label'] = (ratings_df['rating'] >= 4).astype(np.float32)

    Data Preparation for NCF

    Now, let’s prepare the data for our NCF model:

    Copy CodeCopiedUse a different Browser
    train_df, test_df = train_test_split(ratings_df, test_size=0.2, random_state=42)
    
    
    print(f"Training set size: {len(train_df)}")
    print(f"Test set size: {len(test_df)}")
    
    
    num_users = ratings_df['user_id'].max()
    num_items = ratings_df['item_id'].max()
    
    
    print(f"Number of users: {num_users}")
    print(f"Number of items: {num_items}")
    
    
    class NCFDataset(Dataset):
       def __init__(self, df):
           self.user_ids = torch.tensor(df['user_id'].values, dtype=torch.long)
           self.item_ids = torch.tensor(df['item_id'].values, dtype=torch.long)
           self.labels = torch.tensor(df['label'].values, dtype=torch.float)
          
       def __len__(self):
           return len(self.user_ids)
      
       def __getitem__(self, idx):
           return {
               'user_id': self.user_ids[idx],
               'item_id': self.item_ids[idx],
               'label': self.labels[idx]
           }
    
    
    train_dataset = NCFDataset(train_df)
    test_dataset = NCFDataset(test_df)
    
    
    batch_size = 256
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    Model Architecture

    Now we’ll implement the Neural Collaborative Filtering (NCF) model, which combines Generalized Matrix Factorization (GMF) and Multi-Layer Perceptron (MLP) components:

    Copy CodeCopiedUse a different Browser
    class NCF(nn.Module):
       def __init__(self, num_users, num_items, embedding_dim=32, mlp_layers=[64, 32, 16]):
           super(NCF, self).__init__() 
    
    
           self.user_embedding_gmf = nn.Embedding(num_users + 1, embedding_dim)
           self.item_embedding_gmf = nn.Embedding(num_items + 1, embedding_dim)
    
    
           self.user_embedding_mlp = nn.Embedding(num_users + 1, embedding_dim)
           self.item_embedding_mlp = nn.Embedding(num_items + 1, embedding_dim)
          
           mlp_input_dim = 2 * embedding_dim
           self.mlp_layers = nn.ModuleList()
           for idx, layer_size in enumerate(mlp_layers):
               if idx == 0:
                   self.mlp_layers.append(nn.Linear(mlp_input_dim, layer_size))
               else:
                   self.mlp_layers.append(nn.Linear(mlp_layers[idx-1], layer_size))
               self.mlp_layers.append(nn.ReLU())
    
    
           self.output_layer = nn.Linear(embedding_dim + mlp_layers[-1], 1)
           self.sigmoid = nn.Sigmoid()
    
    
           self._init_weights()
      
       def _init_weights(self):
           for m in self.modules():
               if isinstance(m, nn.Embedding):
                   nn.init.normal_(m.weight, mean=0.0, std=0.01)
               elif isinstance(m, nn.Linear):
                   nn.init.kaiming_uniform_(m.weight)
                   if m.bias is not None:
                       nn.init.zeros_(m.bias)
      
       def forward(self, user_ids, item_ids):
           user_embedding_gmf = self.user_embedding_gmf(user_ids)
           item_embedding_gmf = self.item_embedding_gmf(item_ids)
           gmf_vector = user_embedding_gmf * item_embedding_gmf
          
           user_embedding_mlp = self.user_embedding_mlp(user_ids)
           item_embedding_mlp = self.item_embedding_mlp(item_ids)
           mlp_vector = torch.cat([user_embedding_mlp, item_embedding_mlp], dim=-1)
    
    
           for layer in self.mlp_layers:
               mlp_vector = layer(mlp_vector)
    
    
           concat_vector = torch.cat([gmf_vector, mlp_vector], dim=-1)
    
    
           prediction = self.sigmoid(self.output_layer(concat_vector)).squeeze()
          
           return prediction
    
    
    embedding_dim = 32
    mlp_layers = [64, 32, 16]
    model = NCF(num_users, num_items, embedding_dim, mlp_layers).to(device)
    
    
    print(model)

    Training the Model

    Let’s train our NCF model:

    Copy CodeCopiedUse a different Browser
    criterion = nn.BCELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
    
    
    def train_epoch(model, data_loader, criterion, optimizer, device):
       model.train()
       total_loss = 0
       for batch in tqdm(data_loader, desc="Training"):
           user_ids = batch['user_id'].to(device)
           item_ids = batch['item_id'].to(device)
           labels = batch['label'].to(device)
          
           optimizer.zero_grad()
           outputs = model(user_ids, item_ids)
           loss = criterion(outputs, labels)
          
           loss.backward()
           optimizer.step()
          
           total_loss += loss.item()
      
       return total_loss / len(data_loader)
    
    
    def evaluate(model, data_loader, criterion, device):
       model.eval()
       total_loss = 0
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in tqdm(data_loader, desc="Evaluating"):
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
               loss = criterion(outputs, labels)
               total_loss += loss.item()
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       from sklearn.metrics import roc_auc_score, average_precision_score
       auc = roc_auc_score(true_labels, predictions)
       ap = average_precision_score(true_labels, predictions)
      
       return {
           'loss': total_loss / len(data_loader),
           'auc': auc,
           'ap': ap
       }
    
    
    num_epochs = 10
    history = {'train_loss': [], 'val_loss': [], 'val_auc': [], 'val_ap': []}
    
    
    for epoch in range(num_epochs):
       train_loss = train_epoch(model, train_loader, criterion, optimizer, device)
      
       eval_metrics = evaluate(model, test_loader, criterion, device)
      
       history['train_loss'].append(train_loss)
       history['val_loss'].append(eval_metrics['loss'])
       history['val_auc'].append(eval_metrics['auc'])
       history['val_ap'].append(eval_metrics['ap'])
      
       print(f"Epoch {epoch+1}/{num_epochs} - "
             f"Train Loss: {train_loss:.4f}, "
             f"Val Loss: {eval_metrics['loss']:.4f}, "
             f"AUC: {eval_metrics['auc']:.4f}, "
             f"AP: {eval_metrics['ap']:.4f}")
    
    
    plt.figure(figsize=(12, 4))
    
    
    plt.subplot(1, 2, 1)
    plt.plot(history['train_loss'], label='Train Loss')
    plt.plot(history['val_loss'], label='Validation Loss')
    plt.title('Loss During Training')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    
    
    plt.subplot(1, 2, 2)
    plt.plot(history['val_auc'], label='AUC')
    plt.plot(history['val_ap'], label='Average Precision')
    plt.title('Evaluation Metrics')
    plt.xlabel('Epoch')
    plt.ylabel('Score')
    plt.legend()
    
    
    plt.tight_layout()
    plt.show()
    
    
    torch.save(model.state_dict(), 'ncf_model.pth')
    print("Model saved successfully!")

    Generating Recommendations

    Now let’s create a function to generate recommendations for users:

    Copy CodeCopiedUse a different Browser
    def generate_recommendations(model, user_id, n=10):
       model.eval()
       user_ids = torch.tensor([user_id] * num_items, dtype=torch.long).to(device)
       item_ids = torch.tensor(range(1, num_items + 1), dtype=torch.long).to(device)
      
       with torch.no_grad():
           predictions = model(user_ids, item_ids).cpu().numpy()
      
       items_df = pd.DataFrame({
           'item_id': range(1, num_items + 1),
           'score': predictions
       })
      
       user_rated_items = set(ratings_df[ratings_df['user_id'] == user_id]['item_id'].values)
      
       items_df = items_df[~items_df['item_id'].isin(user_rated_items)]
      
       top_n_items = items_df.sort_values('score', ascending=False).head(n)
      
       recommendations = pd.merge(top_n_items, movies_df[['item_id', 'title']], on='item_id')
      
       return recommendations[['item_id', 'title', 'score']]
    
    
    test_users = [1, 42, 100]
    
    
    for user_id in test_users:
       print(f"nTop 10 recommendations for user {user_id}:")
       recommendations = generate_recommendations(model, user_id, n=10)
       print(recommendations)
      
       print(f"nMovies that user {user_id} has rated highly (4-5 stars):")
       user_liked = ratings_df[(ratings_df['user_id'] == user_id) & (ratings_df['rating'] >= 4)]
       user_liked = pd.merge(user_liked, movies_df[['item_id', 'title']], on='item_id')
       user_liked[['item_id', 'title', 'rating']]

    Evaluating the Model Further

    Let’s evaluate our model further by computing some additional metrics:

    Copy CodeCopiedUse a different Browser
    def evaluate_model_with_metrics(model, test_loader, device):
       model.eval()
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in tqdm(test_loader, desc="Evaluating"):
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       from sklearn.metrics import roc_auc_score, average_precision_score, precision_recall_curve, accuracy_score
      
       binary_preds = [1 if p >= 0.5 else 0 for p in predictions]
      
       auc = roc_auc_score(true_labels, predictions)
       ap = average_precision_score(true_labels, predictions)
       accuracy = accuracy_score(true_labels, binary_preds)
      
       precision, recall, thresholds = precision_recall_curve(true_labels, predictions)
      
       plt.figure(figsize=(10, 6))
       plt.plot(recall, precision, label=f'AP={ap:.3f}')
       plt.xlabel('Recall')
       plt.ylabel('Precision')
       plt.title('Precision-Recall Curve')
       plt.legend()
       plt.grid(True)
       plt.show()
      
       return {
           'auc': auc,
           'ap': ap,
           'accuracy': accuracy
       }
    
    
    metrics = evaluate_model_with_metrics(model, test_loader, device)
    print(f"AUC: {metrics['auc']:.4f}")
    print(f"Average Precision: {metrics['ap']:.4f}")
    print(f"Accuracy: {metrics['accuracy']:.4f}")

    Cold Start Analysis

    Let’s analyze how our model performs for new users or users with few ratings (cold start problem):

    Copy CodeCopiedUse a different Browser
    user_rating_counts = ratings_df.groupby('user_id').size().reset_index(name='count')
    user_rating_counts['group'] = pd.cut(user_rating_counts['count'],
                                       bins=[0, 10, 50, 100, float('inf')],
                                       labels=['1-10', '11-50', '51-100', '100+'])
    
    
    print("Number of users in each rating frequency group:")
    print(user_rating_counts['group'].value_counts())
    
    
    def evaluate_by_user_group(model, ratings_df, user_groups, device):
       results = {}
      
       for group_name, user_ids in user_groups.items():
           group_ratings = ratings_df[ratings_df['user_id'].isin(user_ids)]
          
           group_dataset = NCFDataset(group_ratings)
           group_loader = DataLoader(group_dataset, batch_size=256, shuffle=False)
          
           if len(group_loader) == 0:
               continue
          
           model.eval()
           predictions = []
           true_labels = []
          
           with torch.no_grad():
               for batch in group_loader:
                   user_ids = batch['user_id'].to(device)
                   item_ids = batch['item_id'].to(device)
                   labels = batch['label'].to(device)
                  
                   outputs = model(user_ids, item_ids)
                  
                   predictions.extend(outputs.cpu().numpy())
                   true_labels.extend(labels.cpu().numpy())
          
           from sklearn.metrics import roc_auc_score
           try:
               auc = roc_auc_score(true_labels, predictions)
               results[group_name] = auc
           except:
               results[group_name] = None
      
       return results
    
    
    user_groups = {}
    for group in user_rating_counts['group'].unique():
       users_in_group = user_rating_counts[user_rating_counts['group'] == group]['user_id'].values
       user_groups[group] = users_in_group
    
    
    group_performance = evaluate_by_user_group(model, test_df, user_groups, device)
    
    
    plt.figure(figsize=(10, 6))
    groups = []
    aucs = []
    
    
    for group, auc in group_performance.items():
       if auc is not None:
           groups.append(group)
           aucs.append(auc)
    
    
    plt.bar(groups, aucs)
    plt.xlabel('Number of Ratings per User')
    plt.ylabel('AUC Score')
    plt.title('Model Performance by User Rating Frequency (Cold Start Analysis)')
    plt.ylim(0.5, 1.0)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.show()
    
    
    print("AUC scores by user rating frequency:")
    for group, auc in group_performance.items():
       if auc is not None:
           print(f"{group}: {auc:.4f}")

    Business Insights and Extensions

    Copy CodeCopiedUse a different Browser
    def analyze_predictions(model, data_loader, device):
       model.eval()
       predictions = []
       true_labels = []
      
       with torch.no_grad():
           for batch in data_loader:
               user_ids = batch['user_id'].to(device)
               item_ids = batch['item_id'].to(device)
               labels = batch['label'].to(device)
              
               outputs = model(user_ids, item_ids)
              
               predictions.extend(outputs.cpu().numpy())
               true_labels.extend(labels.cpu().numpy())
      
       results_df = pd.DataFrame({
           'true_label': true_labels,
           'predicted_score': predictions
       })
      
       plt.figure(figsize=(12, 6))
      
       plt.subplot(1, 2, 1)
       sns.histplot(results_df['predicted_score'], bins=30, kde=True)
       plt.title('Distribution of Predicted Scores')
       plt.xlabel('Predicted Score')
       plt.ylabel('Count')
      
       plt.subplot(1, 2, 2)
       sns.boxplot(x='true_label', y='predicted_score', data=results_df)
       plt.title('Predicted Scores by True Label')
       plt.xlabel('True Label (0=Disliked, 1=Liked)')
       plt.ylabel('Predicted Score')
      
       plt.tight_layout()
       plt.show()
      
       avg_scores = results_df.groupby('true_label')['predicted_score'].mean()
       print("Average prediction scores:")
       print(f"Items user disliked (0): {avg_scores[0]:.4f}")
       print(f"Items user liked (1): {avg_scores[1]:.4f}")
    
    
    analyze_predictions(model, test_loader, device)

    This tutorial demonstrates implementing Neural Collaborative Filtering, a deep learning recommendation system combining matrix factorization with neural networks. Using the MovieLens dataset and PyTorch, we built a model that generates personalized content recommendations. The implementation addresses key challenges, including the cold start problem and provides performance metrics like AUC and precision-recall curves. This foundation can be extended with hybrid approaches, attention mechanisms, or deployable web applications for various business recommendation scenarios.


    Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 85k+ ML SubReddit.

    The post Step by Step Coding Guide to Build a Neural Collaborative Filtering (NCF) Recommendation System with PyTorch appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleZenless Zone Zero’s Xbox release date has finally been announced to the world
    Next Article Moonsight AI Released Kimi-VL: A Compact and Powerful Vision-Language Model Series Redefining Multimodal Reasoning, Long-Context Understanding, and High-Resolution Visual Processing

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 2, 2025
    Machine Learning

    Introducing auto scaling on Amazon SageMaker HyperPod

    August 30, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Search Params Are State – How TanStack Router Solves It

    Development

    CVE-2025-49257 – ThemBay Zota PHP Remote File Inclusion Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-9244 – “Linksys Router AddStaticRoute Command Injection Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    This handy NordVPN tool flags scam calls on Android – even before you answer

    News & Updates

    Highlights

    Development

    How Web Services Work – The Unseen Engines of the Connected World

    May 14, 2025

    Have you ever wondered how your weather app instantly knows the forecast, how you can…

    Safeguarding Agentic AI Systems: NVIDIA’s Open-Source Safety Recipe

    July 29, 2025
    New Adobe Security Update Fixes Critical Exploits — Don’t Delay Your Update

    New Adobe Security Update Fixes Critical Exploits — Don’t Delay Your Update

    April 9, 2025

    Fairphone 6: Annunciato con Patch di Supporto Disponibili Fin dal Primo Giorno

    June 26, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.