Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Google AI Introduce the Articulate Medical Intelligence Explorer (AMIE): A Large Language Model Optimized for Diagnostic Reasoning, and Evaluate its Ability to Generate a Differential Diagnosis

    Google AI Introduce the Articulate Medical Intelligence Explorer (AMIE): A Large Language Model Optimized for Diagnostic Reasoning, and Evaluate its Ability to Generate a Differential Diagnosis

    April 12, 2025

    Developing an accurate differential diagnosis (DDx) is a fundamental part of medical care, typically achieved through a step-by-step process that integrates patient history, physical exams, and diagnostic tests. With the rise of LLMs, there’s growing potential to support and automate parts of this diagnostic journey using interactive, AI-powered tools. Unlike traditional AI systems focusing on producing a single diagnosis, real-world clinical reasoning involves continuously updating and evaluating multiple diagnostic possibilities as more patient data becomes available. Although deep learning has successfully generated DDx across fields like radiology, ophthalmology, and dermatology, these models generally lack the interactive, conversational capabilities needed to engage effectively with clinicians.

    The advent of LLMs offers a new avenue for building tools that can support DDx through natural language interaction. These models, including general-purpose ones like GPT-4 and medical-specific ones like Med-PaLM 2, have shown high performance on multiple-choice and standardized medical exams. While these benchmarks initially assess a model’s medical knowledge, they don’t reflect its usefulness in real clinical settings or its ability to assist physicians during complex cases. Although some recent studies have tested LLMs on challenging case reports, there’s still a limited understanding of how these models might enhance clinician decision-making or improve patient care through real-time collaboration.

    Researchers at Google introduced AMIE, a large language model tailored for clinical diagnostic reasoning, to evaluate its effectiveness in assisting with DDx. AMIE’s standalone performance outperformed unaided clinicians in a study involving 20 clinicians and 302 complex real-world medical cases. When integrated into an interactive interface, clinicians using AMIE alongside traditional tools produced significantly more accurate and comprehensive DDx lists than those using standard resources alone. AMIE not only improved diagnostic accuracy but also enhanced clinicians’ reasoning abilities. Its performance also surpassed GPT-4 in automated evaluations, showing promise for real-world clinical applications and broader access to expert-level support.

    AMIE, a language model fine-tuned for medical tasks, demonstrated strong performance in generating DDx. Its lists were rated highly for quality, appropriateness, and comprehensiveness. In 54% of cases, AMIE’s DDx included the correct diagnosis, outperforming unassisted clinicians significantly. It achieved a top-10 accuracy of 59%, with the proper diagnosis ranked first in 29% of cases. Clinicians assisted by AMIE also improved their diagnostic accuracy compared to using search tools or working alone. Despite being new to the AMIE interface, clinicians used it similarly to traditional search methods, showing its practical usability.

    In a comparative analysis between AMIE and GPT-4 using a subset of 70 NEJM CPC cases, direct human evaluation comparisons were limited due to different sets of raters. Instead, an automated metric that was shown to align reasonably with human judgment was used. While GPT-4 marginally outperformed AMIE in top-1 accuracy (though not statistically significant), AMIE demonstrated superior top-n accuracy for n > 1, with notable gains for n > 2. This suggests that AMIE generated more comprehensive and appropriate DDx, a crucial aspect in real-world clinical reasoning. Additionally, AMIE outperformed board-certified physicians in standalone DDx tasks and significantly improved clinician performance as an assistive tool, yielding higher top-n accuracy, DDx quality, and comprehensiveness than traditional search-based assistance.

    Beyond raw performance, AMIE’s conversational interface was intuitive and efficient, with clinicians reporting increased confidence in their DDx lists after its use. While limitations exist—such as AMIE’s lack of access to images and tabular data in clinician materials and the artificial nature of CPC-style case presentations the model’s potential for educational support and diagnostic assistance is promising, particularly in complex or resource-limited settings. Nonetheless, the study emphasizes the need for careful integration of LLMs into clinical workflows, with attention to trust calibration, the model’s uncertainty expression, and the potential for anchoring biases and hallucinations. Future work should rigorously evaluate AI-assisted diagnosis’s real-world applicability, fairness, and long-term impacts.


    Check out Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    The post Google AI Introduce the Articulate Medical Intelligence Explorer (AMIE): A Large Language Model Optimized for Diagnostic Reasoning, and Evaluate its Ability to Generate a Differential Diagnosis appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMoonsight AI Released Kimi-VL: A Compact and Powerful Vision-Language Model Series Redefining Multimodal Reasoning, Long-Context Understanding, and High-Resolution Visual Processing
    Next Article Autoapply: Automatically Apply for Jobs with Smart Tools in 2025

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    RIP Hulkamania – Hulk Hogan 1953 – 2025 Shirt

    Web Development

    Nearly 24,000 IPs Target PAN-OS GlobalProtect in Coordinated Login Scan Campaign

    Development

    Microsoft Patch Tuesday, July 2025 Edition

    Security

    Part 2: Implementing Azure Virtual WAN – A Practical Walkthrough

    Development

    Highlights

    GhostContainer: Kaspersky Uncovers Stealthy Backdoor Infiltrating Government & High-Tech Exchange Servers

    July 18, 2025

    GhostContainer: Kaspersky Uncovers Stealthy Backdoor Infiltrating Government & High-Tech Exchange Servers

    In a recent incident response operation, Kaspersky Labs uncovered a highly sophisticated backdoor named GhostContainer, designed to infiltrate Microsoft Exchange infrastructure within government and h …
    Read more

    Published Date:
    Jul 18, 2025 (9 hours, 55 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-34300

    CVE-2020-0688

    What’s New From MongoDB at Google Cloud Next 2025

    What’s New From MongoDB at Google Cloud Next 2025

    April 9, 2025

    The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity

    June 5, 2025

    A Step-by-Step Guide on Building, Customizing, and Publishing an AI-Focused Blogging Website with Lovable.dev and Seamless GitHub Integration

    May 13, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.