Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Report: 71% of tech leaders won’t hire devs without AI skills

      July 17, 2025

      Slack’s AI search now works across an organization’s entire knowledge base

      July 17, 2025

      In-House vs Outsourcing for React.js Development: Understand What Is Best for Your Enterprise

      July 17, 2025

      Tiny Screens, Big Impact: The Forgotten Art Of Developing Web Apps For Feature Phones

      July 16, 2025

      Pokémon has partnered with one of the biggest PC gaming brands again, and you can actually buy these accessories — but do you even want to?

      July 17, 2025

      AMD’s budget Ryzen AI 5 330 processor will introduce a wave of ultra-affordable Copilot+ PCs with its mobile 50 TOPS NPU

      July 17, 2025

      Steam takes down tons of porn games, cracks down on “certain kinds of adult-only content” — here’s why, and its new policy

      July 17, 2025

      Oblivion Remastered and Metal Gear Solid Delta co-developer Virtuos faces layoffs — with 270 workers cut

      July 17, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 17, 2025
      Recent

      The details of TC39’s last meeting

      July 17, 2025

      Notes Android App Using SQLite

      July 17, 2025

      How to Get Security Patches for Legacy Unsupported Node.js Versions

      July 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Pokémon has partnered with one of the biggest PC gaming brands again, and you can actually buy these accessories — but do you even want to?

      July 17, 2025
      Recent

      Pokémon has partnered with one of the biggest PC gaming brands again, and you can actually buy these accessories — but do you even want to?

      July 17, 2025

      AMD’s budget Ryzen AI 5 330 processor will introduce a wave of ultra-affordable Copilot+ PCs with its mobile 50 TOPS NPU

      July 17, 2025

      Steam takes down tons of porn games, cracks down on “certain kinds of adult-only content” — here’s why, and its new policy

      July 17, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»RoR-Bench: Revealing Recitation Over Reasoning in Large Language Models Through Subtle Context Shifts

    RoR-Bench: Revealing Recitation Over Reasoning in Large Language Models Through Subtle Context Shifts

    April 11, 2025
    RoR-Bench: Revealing Recitation Over Reasoning in Large Language Models Through Subtle Context Shifts

    In recent years, the rapid progress of LLMs has given the impression that we are nearing the achievement of Artificial General Intelligence (AGI), with models seemingly capable of solving increasingly complex tasks. However, a fundamental question remains: Are LLMs genuinely reasoning like humans or merely repeating patterns learned during training? Since the release of models like GPT-3 and ChatGPT, LLMs have revolutionized the research landscape, pushing boundaries across AI and science. Data quality, model scaling, and multi-step reasoning improvements have brought LLMs close to passing high-level AGI benchmarks. Yet, their true reasoning capabilities are not fully understood. Instances where advanced models fail to solve simple math problems—despite their apparent simplicity—raise concerns about whether they are truly reasoning or just mimicking familiar solution patterns.

    Although various benchmarks exist to evaluate LLMs across domains like general knowledge, coding, math, and reasoning, many rely on tasks solvable by applying memorized templates. As a result, the actual intelligence and robustness of LLMs remain debatable. Studies show LLMs struggle with subtle context shifts, simple calculations, symbolic reasoning, and out-of-distribution prompts. These weaknesses are amplified under perturbed conditions or misleading cues. Similarly, multi-modal LLMs, including vision-language models like GPT-4v and LLaVA, show the same tendency to recite instead of reason when tested with subtly altered visual or textual inputs. This suggests that issues like spurious correlations, memorization, and inefficient decoding might underlie these failures, indicating a gap between observed performance and genuine understanding.

    ByteDance Seed and the University of Illinois Urbana-Champaign researchers introduce RoR-Bench, a new multi-modal benchmark designed to identify whether LLMs rely on recitation rather than genuine reasoning when solving simple problems with subtly altered conditions. The benchmark includes 158 text and 57 image problem pairs, each featuring a basic reasoning task alongside a slightly modified version. Experiments reveal that leading models like OpenAI-o1 and DeepSeek-R1 suffer drastic performance drops—often over 60% with minor changes. Alarmingly, most models struggle to recognize unsolvable problems—preliminary fixes like prompt engineering offer limited improvement, emphasizing the need for deeper solutions.

    RoR-Bench is a Chinese multimodal benchmark created to assess whether LLMs rely on memorized solution patterns rather than true reasoning. It contains 215 problem pairs—158 text-based and 57 image-based—where each pair includes an original and a subtly altered version. The original problems are simple, often from children’s puzzle sets, while the modified ones introduce minor changes that require entirely different reasoning. Annotators ensured minimal wording changes and no ambiguity. Notably, some problems are designed to have no solution or feature unrelated information, testing LLMs’ ability to recognize illogical conditions and resist recitation-based answers.

    The study empirically evaluates leading LLMs and VLMs on the RoR-Bench benchmark, focusing on their ability to reason through subtle problem changes rather than merely recalling learned patterns. Results reveal that most models suffer a significant performance drop—often over 50% when tested on slightly modified problems, suggesting a reliance on memorization rather than genuine reasoning. Even techniques like Chain-of-Thought prompting or “Forced Correct” instructions provide limited improvement. Few-shot in-context learning shows some gains, especially with increased examples or added instructions, but still fails to close the gap. Overall, these findings highlight the limitations of current models in adaptive reasoning.

    In conclusion, the study introduces RoR-Bench, a Chinese multimodal benchmark designed to uncover a critical flaw in current large language models: their inability to handle simple reasoning tasks when problem conditions are slightly altered. The significant performance drop—often over 50% suggests that these models rely on memorization rather than true reasoning. Even with added prompts or few-shot examples, the issue remains largely unresolved. While the benchmark is limited to Chinese, initial English results indicate similar weaknesses. The findings challenge assumptions about LLM intelligence and call for future research to develop models that reason genuinely rather than reciting learned patterns from training data.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post RoR-Bench: Revealing Recitation Over Reasoning in Large Language Models Through Subtle Context Shifts appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBalancing Accuracy and Efficiency in Language Models: A Two-Phase RL Post-Training Approach for Concise Reasoning
    Next Article Complete Guide: Working with CSV/Excel Files and EDA in Python

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 17, 2025
    Machine Learning

    Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock

    July 17, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    The 7 Stages of Pushing Pixels: From Hope to Existential Dread

    Web Development

    CVE-2025-6340 – School Fees Payment System Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    5 Best Free and Open Source Backend Electronic Circuit Simulators

    Linux
    Utopia Digital AI Robots Are Rising – And the Godfather of Sun-Intelligence, Mr. Mohan, Says It’s Just the Beginning

    Utopia Digital AI Robots Are Rising – And the Godfather of Sun-Intelligence, Mr. Mohan, Says It’s Just the Beginning

    Artificial Intelligence

    Highlights

    Artificial Intelligence

    LWiAI Podcast #212 – o3 pro, Cursor 1.0, ProRL, Midjourney Sued

    June 17, 2025

    Our 212th episode with a summary and discussion of last week’s big AI news!Recorded on…

    Apache Tomcat Vulnerability Let Attackers Bypass Rules & Trigger DoS Condition

    April 29, 2025

    Metal Gear Solid Delta: Snake Eater — How to pre-order, release dates, story, gameplay, and everything else you need to know

    July 15, 2025

    CVE-2025-39366 – Rocket Apps wProject Privilege Escalation Vulnerability

    May 19, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.