Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions

    This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions

    April 8, 2025
    This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions

    Robots are increasingly being developed for home environments, specifically to enable them to perform daily activities like cooking. These tasks involve a combination of visual interpretation, manipulation, and decision-making across a series of actions. Cooking, in particular, is complex for robots due to the diversity in utensils, varying visual perspectives, and frequent omissions of intermediate steps in instructional materials like videos. For a robot to succeed in such tasks, a method is needed that ensures logical planning, flexible understanding, and adaptability to different environmental constraints.

    One major problem in translating cooking demonstrations into robotic tasks is the lack of standardization in online content. Videos might skip steps, include irrelevant segments like introductions, or show arrangements that do not align with the robot’s operational layout. Robots must interpret visual data and textual cues, infer omitted steps, and translate this into a sequence of physical actions. However, when relying purely on generative models to produce these sequences, there is a high chance of logic failures or hallucinated outputs that render the plan infeasible for robotic execution.

    Current tools supporting robotic planning often focus on logic-based models like PDDL or more recent data-driven approaches using Large Language Models (LLMs) or multimodal architectures. While LLMs are adept at reasoning from diverse inputs, they cannot often validate whether the generated plan makes sense in a robotic setting. Prompt-based feedback mechanisms have been tested, but they still fail to confirm the logical correctness of individual actions, especially for complex, multi-step tasks like those in cooking scenarios.

    Researchers from the University of Osaka and the National Institute of Advanced Industrial Science and Technology (AIST), Japan, introduced a new framework integrating an LLM with a Functional Object-Oriented Network (FOON) to develop cooking task plans from subtitle-enhanced videos. This hybrid system uses an LLM to interpret a video and generate task sequences. These sequences are then converted into FOON-based graphs, where each action is checked for feasibility against the robot’s current environment. If a step is deemed infeasible, feedback is generated so that the LLM can revise the plan accordingly, ensuring that only logically sound steps are retained.

    This method involves several layers of processing. First, the cooking video is split into segments based on subtitles extracted using Optical Character Recognition. Key video frames are selected from each segment and arranged into a 3×3 grid to serve as input images. The LLM is prompted with structured details, including task descriptions, known constraints, and environment layouts. Using this data, it infers the target object states for each segment. These are cross-verified by FOON, a graph system where actions are represented as functional units containing input and output object states. If an inconsistency is found—for instance, if a hand is already holding an item when it’s supposed to pick something else—the task is flagged and revised. This loop continues until a complete and executable task graph is formed.

    The researchers tested their method using five full cooking recipes from ten videos. Their experiments successfully generated complete and feasible task plans for four of the five recipes. In contrast, a baseline approach that used only the LLM without FOON validation succeeded in just one case. Specifically, the FOON-enhanced method had a success rate of 80% (4/5), while the baseline achieved only 20% (1/5). Moreover, in the component evaluation of target object node estimation, the system achieved an 86% success rate in accurately predicting object states. During the video preprocessing stage, the OCR process extracted 270 subtitle words compared to the ground truth of 230, resulting in a 17% error rate, which the LLM could still manage by filtering redundant instructions.

    In a real-world trial using a dual-arm UR3e robot system, the team demonstrated their method on a gyudon (beef bowl) recipe. The robot could infer and insert a missing “cut” action that was absent in the video, showing the system’s ability to identify and compensate for incomplete instructions. The task graph for the recipe was generated after three re-planning attempts, and the robot completed the cooking sequence successfully. The LLM also correctly ignored non-essential scenes like the video introduction, identifying only 8 of 13 necessary segments for task execution.

    This research clearly outlines the problem of hallucination and logical inconsistency in LLM-based robotic task planning. The proposed method offers a robust solution to generate actionable plans from unstructured cooking videos by incorporating FOON as a validation and correction mechanism. The methodology bridges reasoning and logical verification, enabling robots to execute complex tasks by adapting to environmental conditions while maintaining task accuracy.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleSensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors
    Next Article How To Fix Forced Reflows And Layout Thrashing

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    A Coding Implementation to Build an Advanced Web Intelligence Agent with Tavily and Gemini AI

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    AustralianSuper, Rest, ART Among Victims in Widespread Superannuation Cyberattacks

    Development

    A Guide to Securing AI App Development: Join This Cybersecurity Webinar

    Development

    Android Security Update – Patch for Vulnerabilities that Allows Privilege Escalation

    Security

    The Only API Testing Checklist You Need in 2024

    Development

    Highlights

    I replaced my high-end Wi-Fi 7 router with a more affordable option – and didn’t regret it

    March 16, 2025

    Wi-Fi 7 is all the rage in home networking, so I tested a midrange mesh…

    CVE-2025-4017 – Novel-Plus LogController Java Unauthenticated Remote Authorization Bypass

    April 28, 2025

    Google Cloud: Driving digital transformation

    May 27, 2025

    12 Best Free and Open Source QR Code Tools

    February 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.