Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    April 7, 2025

    Reinforcement Learning RL has become a widely used post-training method for LLMs, enhancing capabilities like human alignment, long-term reasoning, and adaptability. A major challenge, however, is generating accurate reward signals in broad, less structured domains, as current high-quality reward models are largely built on rule-based systems or verifiable tasks such as math and coding. In general applications, reward criteria are more diverse and subjective, lacking clear ground truths. To address this, generalist reward models (RMs) are being explored for broader applicability. However, these models must balance input flexibility and scalability during inference, particularly in producing reliable, high-quality rewards across varied tasks and domains.

    Existing reward modeling approaches include scalar, semi-scalar, and generative techniques, each with flexibility and inference-time performance trade-offs. For instance, pairwise models are limited to relative comparisons, while scalar models struggle with producing diverse feedback. Generative reward models (GRMs) offer richer, more flexible outputs, making them more suited for evaluating various responses. Recent work has explored training GRMs through offline RL, integrating tools and external knowledge to improve reward quality. However, few methods directly address how RMs can scale efficiently during inference. This has led to research on methods like sampling-based scaling, chain-of-thought prompting, and reward-guided aggregation, aiming to co-scale policy models and reward models during inference. These developments hold promise for more robust, general-purpose reward systems in LLMs.

    DeepSeek-AI and Tsinghua University researchers explore enhancing reward models RM for general queries by improving inference-time scalability using increased computing and better learning techniques. They employ pointwise GRM for flexible input handling and propose a learning method—Self-Principled Critique Tuning (SPCT)—which helps GRMs generate adaptive principles and accurate critiques during online reinforcement learning. They apply parallel sampling and introduce a meta RM to scale effectively and refine the voting process. Their DeepSeek-GRM models outperform existing benchmark methods, offering higher reward quality and scalability, with plans for open-sourcing despite challenges in some complex tasks.

    The researchers introduce SPCT, a method designed to enhance pointwise GRMs by enabling them to generate adaptive principles and accurate critiques. SPCT consists of two stages: rejective fine-tuning for initializing principle and critique generation and rule-based RL for refinement. Instead of treating principles as preprocessing, they are generated dynamically during inference. This promotes scalability by improving reward granularity. Additionally, inference-time performance is boosted through parallel sampling and voting, supported by a meta reward model (meta RM) that filters out low-quality outputs. Overall, SPCT improves reward accuracy, robustness, and scalability in GRMs.

    Using standard metrics, the study evaluates various RM methods across benchmarks like Reward Bench, PPE, RMB, and ReaLMistake. DeepSeek-GRM-27B consistently outperforms baselines and rivals strong public models like GPT-4o. Inference-time scaling, especially with voting and meta reward models, significantly boosts performance—achieving results comparable to much larger models. Ablation studies highlight the importance of components like principle generation and non-hinted sampling. Training-time scaling shows diminishing returns compared to inference-time strategies. Overall, DeepSeek-GRM, enhanced with SPCT and meta RM, offers robust, scalable reward modeling with reduced domain bias and strong generalization.

    In conclusion, the study presents SPCT, a method that improves inference-time scalability for GRMs through rule-based online reinforcement learning. SPCT enables adaptive principle and critique generation, enhancing reward quality across diverse tasks. DeepSeek-GRM models outperform several baselines and strong public models, especially when paired with a meta reward model for inference-time scaling. Using parallel sampling and flexible input handling, these GRMs achieve strong performance without relying on larger model sizes. Future work includes integrating GRMs into RL pipelines, co-scaling with policy models, and serving as reliable offline evaluators.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMMSearch-R1: End-to-End Reinforcement Learning for Active Image Search in LMMs
    Next Article Blockchain & Neuroscience: Unlocking the Future of Brain-Tech Innovation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Sonatype reveals 18,000 malicious open source packages in its Q1 Open Source Malware Index

    Tech & Work

    @ts-ignore is almost always the worst option

    Development

    Stalkerware firm gets scooped by SQL-slinging security snoop

    Security

    CISA Warns of D-Link Path Traversal Vulnerability Exploited in Attacks

    Security

    Highlights

    Accessibility Analyzer

    July 9, 2025

    Post Content Source: Read More 

    Best Ahrefs Alternatives Guide: 10 Tools To Choose From

    July 16, 2025

    Canvas, meet code: Building Figma’s code layers

    June 30, 2025

    Scattered Spider Behind Cyberattacks on M&S and Co-op, Causing Up to $592M in Damages

    June 21, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.