Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The state of DevOps and AI: Not just hype

      September 1, 2025

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      Prompting Is A Design Act: How To Brief, Guide And Iterate With AI

      August 29, 2025

      Look out, Meta Ray-Bans! These AI glasses just raised over $1M in pre-orders in 3 days

      September 2, 2025

      Samsung ‘Galaxy Glasses’ powered by Android XR are reportedly on track to be unveiled this month

      September 2, 2025

      The M4 iPad Pro is discounted $100 as a last-minute Labor Day deal

      September 2, 2025

      Distribution Release: Linux From Scratch 12.4

      September 1, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025
      Recent

      Enhanced Queue Job Control with Laravel’s ThrottlesExceptions failWhen() Method

      September 2, 2025

      August report 2025

      September 2, 2025

      Fake News Detection using Python Machine Learning (ML)

      September 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025
      Recent

      Installing Proxmox on a Raspberry Pi to run Virtual Machines on it

      September 2, 2025

      Download Transcribe! for Windows

      September 1, 2025

      Microsoft Fixes CertificateServicesClient (CertEnroll) Error in Windows 11

      September 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    April 7, 2025

    Reinforcement Learning RL has become a widely used post-training method for LLMs, enhancing capabilities like human alignment, long-term reasoning, and adaptability. A major challenge, however, is generating accurate reward signals in broad, less structured domains, as current high-quality reward models are largely built on rule-based systems or verifiable tasks such as math and coding. In general applications, reward criteria are more diverse and subjective, lacking clear ground truths. To address this, generalist reward models (RMs) are being explored for broader applicability. However, these models must balance input flexibility and scalability during inference, particularly in producing reliable, high-quality rewards across varied tasks and domains.

    Existing reward modeling approaches include scalar, semi-scalar, and generative techniques, each with flexibility and inference-time performance trade-offs. For instance, pairwise models are limited to relative comparisons, while scalar models struggle with producing diverse feedback. Generative reward models (GRMs) offer richer, more flexible outputs, making them more suited for evaluating various responses. Recent work has explored training GRMs through offline RL, integrating tools and external knowledge to improve reward quality. However, few methods directly address how RMs can scale efficiently during inference. This has led to research on methods like sampling-based scaling, chain-of-thought prompting, and reward-guided aggregation, aiming to co-scale policy models and reward models during inference. These developments hold promise for more robust, general-purpose reward systems in LLMs.

    DeepSeek-AI and Tsinghua University researchers explore enhancing reward models RM for general queries by improving inference-time scalability using increased computing and better learning techniques. They employ pointwise GRM for flexible input handling and propose a learning method—Self-Principled Critique Tuning (SPCT)—which helps GRMs generate adaptive principles and accurate critiques during online reinforcement learning. They apply parallel sampling and introduce a meta RM to scale effectively and refine the voting process. Their DeepSeek-GRM models outperform existing benchmark methods, offering higher reward quality and scalability, with plans for open-sourcing despite challenges in some complex tasks.

    The researchers introduce SPCT, a method designed to enhance pointwise GRMs by enabling them to generate adaptive principles and accurate critiques. SPCT consists of two stages: rejective fine-tuning for initializing principle and critique generation and rule-based RL for refinement. Instead of treating principles as preprocessing, they are generated dynamically during inference. This promotes scalability by improving reward granularity. Additionally, inference-time performance is boosted through parallel sampling and voting, supported by a meta reward model (meta RM) that filters out low-quality outputs. Overall, SPCT improves reward accuracy, robustness, and scalability in GRMs.

    Using standard metrics, the study evaluates various RM methods across benchmarks like Reward Bench, PPE, RMB, and ReaLMistake. DeepSeek-GRM-27B consistently outperforms baselines and rivals strong public models like GPT-4o. Inference-time scaling, especially with voting and meta reward models, significantly boosts performance—achieving results comparable to much larger models. Ablation studies highlight the importance of components like principle generation and non-hinted sampling. Training-time scaling shows diminishing returns compared to inference-time strategies. Overall, DeepSeek-GRM, enhanced with SPCT and meta RM, offers robust, scalable reward modeling with reduced domain bias and strong generalization.

    In conclusion, the study presents SPCT, a method that improves inference-time scalability for GRMs through rule-based online reinforcement learning. SPCT enables adaptive principle and critique generation, enhancing reward quality across diverse tasks. DeepSeek-GRM models outperform several baselines and strong public models, especially when paired with a meta reward model for inference-time scaling. Using parallel sampling and flexible input handling, these GRMs achieve strong performance without relying on larger model sizes. Future work includes integrating GRMs into RL pipelines, co-scaling with policy models, and serving as reliable offline evaluators.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMMSearch-R1: End-to-End Reinforcement Learning for Active Image Search in LMMs
    Next Article Blockchain & Neuroscience: Unlocking the Future of Brain-Tech Innovation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 2, 2025
    Machine Learning

    Introducing auto scaling on Amazon SageMaker HyperPod

    August 30, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Commodore OS is a fan-made Commodore inspired Linux distribution

    Linux

    LWiAI Podcast #202 – Qwen-32B, Anthropic’s $3.5 billion, LLM Cognitive Behaviors

    Artificial Intelligence

    New Copilot+ PC feature rolls out to Windows Insiders — even if your device is powered by Intel or AMD

    News & Updates

    Watch Blizzard’s insane China drone show for World of Warcraft’s 20thanniversary — Blizzard also announces a crazy, China-exclusive “Raid Rush” server that I wish the rest of the world could play

    News & Updates

    Highlights

    Microsoft: KB5060533 update triggers boot errors on Surface Hub v1 devices

    June 13, 2025

    Microsoft: KB5060533 update triggers boot errors on Surface Hub v1 devices

    Microsoft is investigating a known issue that triggers Secure Boot errors and prevents Surface Hub v1 devices from starting up.
    These boot problems only impact Surface Hub v1 systems running Windows 1 …
    Read more

    Published Date:
    Jun 13, 2025 (4 hours, 55 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-33073

    CVE-2025-33053

    Ofcom Bans Global Titles Leasing to Thwart Criminal Abuse of UK Mobile Networks

    April 22, 2025

    CVE-2024-38823 – Salt Replays

    June 13, 2025

    CVE-2025-26847 – Znuny Support Bundle Password Exposure Vulnerability

    May 8, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.