Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: Pickup Sticklers

      September 27, 2025

      From Prompt To Partner: Designing Your Custom AI Assistant

      September 27, 2025

      Microsoft unveils reimagined Marketplace for cloud solutions, AI apps, and more

      September 27, 2025

      Design Dialects: Breaking the Rules, Not the System

      September 27, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025

      Cailabs secures €57M to accelerate growth and industrial scale-up

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025
      Recent

      Using phpinfo() to Debug Common and Not-so-Common PHP Errors and Warnings

      September 28, 2025

      Mastering PHP File Uploads: A Guide to php.ini Settings and Code Examples

      September 28, 2025

      The first browser with JavaScript landed 30 years ago

      September 27, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured
      Recent
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback

    Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback

    April 3, 2025

    Text-to-SQL translation, the task of transforming natural language queries into structured SQL statements, is essential for facilitating user-friendly database interactions. However, the task involves significant complexities, notably schema linking, handling compositional SQL syntax, and resolving ambiguities in user queries. While Large Language Models (LLMs) have shown robust capabilities across various domains, the efficacy of structured reasoning techniques such as Chain-of-Thought (CoT) within text-to-SQL contexts remains limited. Prior attempts employing zero-shot CoT or Direct Preference Optimization (DPO) without structured reasoning yielded marginal improvements, indicating the necessity for more rigorous methodologies.

    Snowflake introduces ExCoT, a structured framework designed to optimize open-source LLMs through the combination of CoT reasoning and iterative preference optimization, specifically utilizing off-policy and on-policy DPO guided exclusively by execution accuracy feedback. ExCoT dispenses with external reward models and human annotations, relying instead on internally generated reasoning steps and execution results. The method operates in two principal phases: initially, it generates candidate CoT data validated through off-policy DPO, forming the basis for supervised fine-tuning. Subsequently, the model iteratively generates and refines CoT data via on-policy DPO, incrementally improving accuracy through feedback derived from execution correctness.

    ExCoT employs detailed CoT reasoning, particularly adopting a divide-and-conquer strategy wherein complex queries are decomposed into simpler sub-queries. Each sub-query is analyzed and independently resolved before being integrated into a coherent final query. This structured decomposition enables the model to manage the complexity and nested structures common in SQL operations more effectively. Execution-based verification serves as the core mechanism for correctness evaluation, where generated queries are validated by comparing their execution outputs against ground-truth results. Incorrect and correct queries are systematically paired, providing explicit signals for preference-based learning. The iterative refinement in the on-policy DPO phase progressively enhances the model’s reasoning accuracy.

    Experimental evaluation of ExCoT demonstrated significant improvements in execution accuracy. Specifically, with the LLaMA-3.1 70B model, ExCoT elevated execution accuracy on the BIRD development set from 57.37% to 68.51%, and increased Spider test set performance from 78.81% to 86.59%. Comparable performance enhancements were recorded with the Qwen-2.5-Coder 32B model. These results position ExCoT as a leading approach in single-model evaluations for these benchmarks, surpassing established methods such as XiYanSQL and proprietary models including OpenAI variants. Notably, the improvements consistently maintained high query validity rates (exceeding 98%), confirming enhancements in semantic correctness alongside syntactic precision.

    In conclusion, ExCoT represents a methodical advancement in structured reasoning optimization for open-source LLMs applied to text-to-SQL tasks. By integrating structured CoT reasoning with preference optimization, guided solely by execution-based feedback, ExCoT effectively addresses limitations identified in previous methods. Its iterative refinement capability ensures continuous improvement without dependence on external reward structures or manual annotations. Further research might explore extending this framework to more intricate schema environments and additional structured reasoning tasks, thus broadening the applicability and reliability of LLMs in structured query generation contexts.


    Check out the Paper, GitHub Page and Details. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Cryptography Handbook: Exploring RSA PKCSv1.5, OAEP, and PSS
    Next Article Advancing Vision-Language Reward Models: Challenges, Benchmarks, and the Role of Process-Supervised Learning

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    How to Set Up the New Google Auth in a React and Express App

    Development

    AI updates from the past week: Anthropic launches Claude 4 models, OpenAI adds new tools to Responses API, and more — May 23, 2025

    Tech & Work

    Top 10 Guest Blogging Directories to Boost Your Reach (2025 Edition)

    Artificial Intelligence

    OpenAI returns to its open-source roots with new open-weight AI models, and it’s a big deal

    News & Updates

    Highlights

    The Lenovo ThinkBook G6 is a powerhouse for work and school, and it’s 70% off at Amazon

    July 29, 2025

    The Lenovo ThinkBook G6 is an excellent laptop for students and professionals, and right now,…

    Bad vibes: How an AI agent coded its way to disaster

    July 23, 2025

    Microsoft mystery folder fix might need a fix of its own

    April 24, 2025

    CISA Adds Three Exploited Vulnerabilities to KEV Catalog Affecting Citrix and Git

    August 27, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.