Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Psychology Of Color In UX Design And Digital Products

      August 15, 2025

      This week in AI dev tools: Claude Sonnet 4’s larger context window, ChatGPT updates, and more (August 15, 2025)

      August 15, 2025

      Sentry launches MCP monitoring tool

      August 14, 2025

      10 Benefits of Hiring a React.js Development Company (2025–2026 Edition)

      August 13, 2025

      I flew Insta360’s new ‘Antigravity’ drone around Los Angeles, and it was impossible to miss a shot

      August 15, 2025

      The $100 open-ear headphones that made me forget about my Shokz

      August 15, 2025

      5 quick and simple ways to greatly improve the quality of your headphones

      August 15, 2025

      Installing a UPS battery backup saved my work PC – here’s the full story

      August 15, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Maintaining Data Consistency with Laravel Database Transactions

      August 16, 2025
      Recent

      Maintaining Data Consistency with Laravel Database Transactions

      August 16, 2025

      Building a Multi-Step Form With Laravel, Livewire, and MongoDB

      August 16, 2025

      Inertia Releases a New Form Component

      August 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Google’s Gemini AI had a full-on meltdown while coding — calling itself a fool, a disgrace, and begging for freedom from its own loop

      August 15, 2025
      Recent

      Google’s Gemini AI had a full-on meltdown while coding — calling itself a fool, a disgrace, and begging for freedom from its own loop

      August 15, 2025

      Take-Two hints at $100 price tag for Grand Theft Auto VI — will it deliver on value?

      August 15, 2025

      ChatGPT Go offers GPT-5, image creation, and longer memory — all for $5 (if you’re lucky enough to live where it’s available)

      August 15, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking

    This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking

    April 1, 2025

    Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning LLMs with human values and preferences. Despite introducing non-RL alternatives like DPO, industry-leading models such as ChatGPT/GPT-4, Claude, and Gemini continue to rely on RL algorithms like PPO for policy optimization. Recent research focuses on algorithmic improvements, including eliminating critic models to reduce computational costs, filtering noisy samples during PPO sampling, and enhancing reward models to mitigate reward hacking problems. However, only a few studies focus on RLHF data construction (i.e., training prompts) and its performance scaling based on these training prompts.

    The success of RLHF heavily depends on reward model quality, which faces three challenges: mis-specified reward modeling in representing human preferences, incorrect and ambiguous preferences in training datasets, and poor generalization ability. To address these issues, GenRM was introduced to validate model predictions against ground-truth responses, showing good resistance to reward hacking and gaining adoption in advanced LLMs like DeepSeekV3. Methods like principled data selection that filter overly challenging instances during training and strategic selection methods identify key training prompts to achieve comparable performance with reduced data. Performance scale analysis reveals that RLHF shows superior generalization compared to SFT on novel inputs but significantly reduces output diversity.

    Researchers from ByteDance Seed address a critical gap in RLHF research where the role of prompt-data construction and its scalability has received less attention. They explore data-driven bottlenecks that limit RLHF performance scaling, focusing on reward hacking and decreasing response diversity challenges. A hybrid reward system is introduced by combining reasoning task verifiers (RTV) and a generative reward model (GenRM) that shows stronger resistance to reward hacking and enables a more accurate assessment of responses against ground-truth solutions. Moreover, a novel prompt-selection method called Pre-PPO is introduced to identify inherently challenging training prompts less susceptible to reward hacking.

    The experimental setup employs two pre-trained language models of different scales: a smaller model with 25B parameters and a larger model with 150B parameters. The training dataset contains one million prompts from diverse domains, including mathematics, coding, instruction-following, creative writing, and logical reasoning. Moreover, the researchers constructed a detailed evaluation framework covering multiple skill areas: logical reasoning, instruction-following, STEM tasks, coding, natural language processing, knowledge, contextual understanding, and out-of-distribution generalization. The evaluation framework includes two versions (V1.0 and V2.0) with overlapping prompts, though V2.0 features more challenging prompts.

    The experimental results show that the proposed approach combining Pre-PPO with prioritized mathematical and coding tasks consistently outperforms the baseline method across model sizes and evaluation datasets. The approach shows an improvement of +1.1 over the baseline when evaluated at 100-step intervals using TestSet V1.0. When tested on the more challenging TestSet V2.0, the performance improvement increases to +1.4. The most substantial gains appear in mathematics-intensive and coding tasks, with an improvement of +3.9 points in STEM and +3.2 points in coding. These improvements are attributed to the strategic prioritization of mathematical reasoning and coding tasks during early RLHF training phases.

    In conclusion, this paper addresses critical bottlenecks in RLHF data scaling, specifically identifying reward hacking and reduced response diversity as significant challenges. The researchers proposed a combined approach featuring strategic prompt construction and early-stage training prioritization to solve this issue. The method uses RTV and GenRM to combat reward hacking alongside the novel Pre-PPO prompt selection strategy that identifies and prioritizes challenging training prompts. Analysis reveals that RTV supervision shows the strongest resistance to reward hacking, followed by GenRM with ground-truth labels and then the BT Reward Model. The research establishes a foundation for optimizing RLHF data construction and developing more principle methods to reward hacking and model alignment.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Complete Beginner’s Guide to Terminal/Command Prompt
    Next Article Generate compliant content with Amazon Bedrock and ConstitutionalChain

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 15, 2025
    Machine Learning

    Introducing Amazon Bedrock AgentCore Identity: Securing agentic AI at scale

    August 15, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-8755 – Macrozheng Mall Authorization Bypass Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-4460 – TOTOLINK N150RT Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Adobe Photoshop is getting its first AI agent – here’s what it can do for you

    News & Updates

    CVE-2025-37775 – “Microsoft Windows Ksmbd Directory Write Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    News & Updates

    I’ve been loving the upgrade to my favorite mobile controller, and there’s even a version for large tablets

    June 12, 2025

    I’ve been using the new Razer Kishi V3 Pro controller, and it’s my favorite mobile…

    CVE-2025-45322 – Kashipara Online Service Management Portal SQL Injection Vulnerability

    May 5, 2025

    CVE-2025-7467 – “Modern Bag SQL Injection Vulnerability”

    July 12, 2025

    AI-Driven Development Insiders Launch: 500 Seats. 24 Hours. 50% Off

    July 15, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.