Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Representative Line: Brace Yourself

      September 18, 2025

      Beyond the Pilot: A Playbook for Enterprise-Scale Agentic AI

      September 18, 2025

      GitHub launches MCP Registry to provide central location for trusted servers

      September 18, 2025

      MongoDB brings Search and Vector Search to self-managed versions of database

      September 18, 2025

      Distribution Release: Security Onion 2.4.180

      September 18, 2025

      Distribution Release: Omarchy 3.0.1

      September 17, 2025

      Distribution Release: Mauna Linux 25

      September 16, 2025

      Distribution Release: SparkyLinux 2025.09

      September 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025
      Recent

      AI Momentum and Perficient’s Inclusion in Analyst Reports – Highlights From 2025 So Far

      September 18, 2025

      Shopping Portal using Python Django & MySQL

      September 17, 2025

      Perficient Earns Adobe’s Real-time CDP Specialization

      September 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Valve Survey Reveals Slight Retreat in Steam-on-Linux Share

      September 18, 2025
      Recent

      Valve Survey Reveals Slight Retreat in Steam-on-Linux Share

      September 18, 2025

      Review: Elecrow’s All-in-one Starter Kit for Pico 2

      September 18, 2025

      FOSS Weekly #25.38: GNOME 49 Release, KDE Drama, sudo vs sudo-rs, Local AI on Android and More Linux Stuff

      September 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking

    This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking

    April 1, 2025

    Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning LLMs with human values and preferences. Despite introducing non-RL alternatives like DPO, industry-leading models such as ChatGPT/GPT-4, Claude, and Gemini continue to rely on RL algorithms like PPO for policy optimization. Recent research focuses on algorithmic improvements, including eliminating critic models to reduce computational costs, filtering noisy samples during PPO sampling, and enhancing reward models to mitigate reward hacking problems. However, only a few studies focus on RLHF data construction (i.e., training prompts) and its performance scaling based on these training prompts.

    The success of RLHF heavily depends on reward model quality, which faces three challenges: mis-specified reward modeling in representing human preferences, incorrect and ambiguous preferences in training datasets, and poor generalization ability. To address these issues, GenRM was introduced to validate model predictions against ground-truth responses, showing good resistance to reward hacking and gaining adoption in advanced LLMs like DeepSeekV3. Methods like principled data selection that filter overly challenging instances during training and strategic selection methods identify key training prompts to achieve comparable performance with reduced data. Performance scale analysis reveals that RLHF shows superior generalization compared to SFT on novel inputs but significantly reduces output diversity.

    Researchers from ByteDance Seed address a critical gap in RLHF research where the role of prompt-data construction and its scalability has received less attention. They explore data-driven bottlenecks that limit RLHF performance scaling, focusing on reward hacking and decreasing response diversity challenges. A hybrid reward system is introduced by combining reasoning task verifiers (RTV) and a generative reward model (GenRM) that shows stronger resistance to reward hacking and enables a more accurate assessment of responses against ground-truth solutions. Moreover, a novel prompt-selection method called Pre-PPO is introduced to identify inherently challenging training prompts less susceptible to reward hacking.

    The experimental setup employs two pre-trained language models of different scales: a smaller model with 25B parameters and a larger model with 150B parameters. The training dataset contains one million prompts from diverse domains, including mathematics, coding, instruction-following, creative writing, and logical reasoning. Moreover, the researchers constructed a detailed evaluation framework covering multiple skill areas: logical reasoning, instruction-following, STEM tasks, coding, natural language processing, knowledge, contextual understanding, and out-of-distribution generalization. The evaluation framework includes two versions (V1.0 and V2.0) with overlapping prompts, though V2.0 features more challenging prompts.

    The experimental results show that the proposed approach combining Pre-PPO with prioritized mathematical and coding tasks consistently outperforms the baseline method across model sizes and evaluation datasets. The approach shows an improvement of +1.1 over the baseline when evaluated at 100-step intervals using TestSet V1.0. When tested on the more challenging TestSet V2.0, the performance improvement increases to +1.4. The most substantial gains appear in mathematics-intensive and coding tasks, with an improvement of +3.9 points in STEM and +3.2 points in coding. These improvements are attributed to the strategic prioritization of mathematical reasoning and coding tasks during early RLHF training phases.

    In conclusion, this paper addresses critical bottlenecks in RLHF data scaling, specifically identifying reward hacking and reduced response diversity as significant challenges. The researchers proposed a combined approach featuring strategic prompt construction and early-stage training prioritization to solve this issue. The method uses RTV and GenRM to combat reward hacking alongside the novel Pre-PPO prompt selection strategy that identifies and prioritizes challenging training prompts. Analysis reveals that RTV supervision shows the strongest resistance to reward hacking, followed by GenRM with ground-truth labels and then the BT Reward Model. The research establishes a foundation for optimizing RLHF data construction and developing more principle methods to reward hacking and model alignment.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post This AI Paper from ByteDance Introduces a Hybrid Reward System Combining Reasoning Task Verifiers (RTV) and a Generative Reward Model (GenRM) to Mitigate Reward Hacking appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Complete Beginner’s Guide to Terminal/Command Prompt
    Next Article Generate compliant content with Amazon Bedrock and ConstitutionalChain

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    The Curious Case of AUR Updates Fetching 30 GB of Data for Electron

    Linux

    SVG Files Weaponized: Phishing Attacks Embed HTML Code

    Security

    Canonical ha Generato Quasi 300 Milioni di Dollari di Ricavi nel 2024

    Linux

    Discover the Average Cost for Website Redesign: What to Expect in 2025

    Web Development

    Highlights

    News & Updates

    The best-selling PS5 game this year is by Xbox — it sold twice as many copies as PlayStation exclusive Death Stranding 2 in the same amount of time, and outsold 2024’s GOTY too

    July 23, 2025

    Since coming to PS5 in April, Xbox’s Forza Horizon 5 has sold over 3 million…

    Days after the death of Skype, Microsoft’s other messaging app received an AI update — no, not Teams

    May 10, 2025

    CVE-2025-48939 – Tarteaucitron.js Script Element Property Clobbering Vulnerability

    July 3, 2025

    Halo Infinite is getting a sequel — but it’s not what you think

    June 20, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.