Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 29, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 29, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 29, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 29, 2025

      Gemini can now watch Google Drive videos for you – including work meetings

      May 29, 2025

      LG is still giving away a free 27-inch gaming monitor, but you’ll have to hurry

      May 29, 2025

      Slow Roku TV? This 30-second fix made my system run like new again

      May 29, 2025

      Hume’s new EVI 3 model lets you customize AI voices – how to try it

      May 29, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Your Agentforce Readiness Assessment

      May 29, 2025
      Recent

      Your Agentforce Readiness Assessment

      May 29, 2025

      Introducing N|Sentinel: Your AI-Powered Agent for Node.js Performance Optimization

      May 29, 2025

      FoalTS framework – version 5 is released

      May 29, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      KB5058499 finally makes Windows 11 24H2 stable for gaming, and it wasn’t Nvidia’s fault

      May 29, 2025
      Recent

      KB5058499 finally makes Windows 11 24H2 stable for gaming, and it wasn’t Nvidia’s fault

      May 29, 2025

      Transform Your Workflow With These 10 Essential Yet Overlooked Linux Tools You Need to Try

      May 29, 2025

      KNOPPIX is a bootable Live system

      May 29, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Can 1B LLM Surpass 405B LLM? Optimizing Computation for Small LLMs to Outperform Larger Models

    Can 1B LLM Surpass 405B LLM? Optimizing Computation for Small LLMs to Outperform Larger Models

    February 13, 2025

    Test-Time Scaling (TTS) is a crucial technique for enhancing the performance of LLMs by leveraging additional computational resources during inference. Despite its potential, there has been little systematic analysis of how policy models, Process Reward Models (PRMs), and problem complexity influence TTS, limiting its practical application. TTS can be categorized into Internal TTS, which encourages step-by-step reasoning through extended Chain-of-Thought (CoT) processes, and External TTS, which enhances performance using sampling or search-based methods with fixed models. The key challenge in External TTS lies in optimizing computational allocation for different tasks. Current methods employ PRMs to guide answer selection and scale test-time computation efficiently. However, a comprehensive evaluation of how factors impact TTS strategies remains unexplored, restricting the community’s understanding of optimal computation scaling for LLMs.

    Prior research has explored multiple strategies to enhance LLM performance, including majority voting, search-based approaches, and self-refinement techniques. Test-time methods such as CoT prompting, self-verification, and external tool integration have proven effective in improving reasoning without modifying model parameters. PRMs, which outperform Output Reward Models (ORMs), significantly refine LLM-generated outputs. Recent advancements in PRMs focus on efficient data collection methods, implicit rewards, and advanced ranking techniques to improve mathematical reasoning. Tools like ProcessBench and PRMBench have been developed to facilitate benchmarking and evaluate PRM effectiveness. The evolution of PRMs and TTS strategies underscores the need for systematic research to optimize inference-time computation and enhance LLM capabilities across diverse tasks.

    Researchers from Shanghai AI Laboratory, Tsinghua University, Harbin Institute of Technology, and BUPT investigate the impact of policy models, PRMs, and problem complexity on TTS through extensive experiments on MATH-500 and AIME24 tasks. Their findings show that compute-optimal TTS strategies depend on these factors, allowing smaller models (e.g., 1B, 3B, 7B) to outperform larger ones (e.g., 405B, GPT-4o, DeepSeek-R1) with greater efficiency. The study emphasizes the importance of reward-aware TTS for optimal scaling, demonstrating that strategic test-time computation significantly enhances LLM reasoning abilities across different architectures and task complexities.

    Compute-optimal TTS optimally distributes computational resources for each problem. Prior approaches rely on PRMs as verifiers, either trained on the same policy model (on-policy) or a different one (offline). On-policy PRMs yield more accurate rewards, while offline PRMs face out-of-distribution challenges. Given the high cost of training PRMs per model, a general approach is needed. Experiments show that rewards significantly influence TTS performance. Thus, a reward-aware strategy is proposed, integrating rewards into compute allocation. Additionally, problem difficulty is better assessed using absolute thresholds rather than quantiles for more effective scaling strategies.

    The study examines the effectiveness of Compute-Optimal TTS in enhancing the performance of small policy models compared to larger ones. Experiments assess whether TTS allows smaller models to outperform larger ones, improve upon CoT and majority voting, and surpass long-CoT methods. Findings reveal that small models using compute-optimal TTS can outperform significantly larger models on MATH-500 and AIME24 tasks. TTS improves efficiency by up to 256× compared to majority voting and boosts reasoning by 154.6% over CoT. Moreover, TTS outperforms several long-CoT-based methods, demonstrating its effectiveness in enhancing LLM reasoning capabilities.

    In conclusion, the study examines compute-optimal TTS across various policy models, PRMs, and task complexities. Findings highlight that smaller models can surpass larger ones using optimized TTS, with a 1B model outperforming a 405B model. A 7B PRM also effectively supervises a 72B policy model, emphasizing a shift towards “weak-to-strong” supervision. Future work should focus on improving supervision methods for enhanced reasoning. While results are based on mathematical tasks, expanding TTS to coding and chemistry remains unexplored. These insights underscore TTS’s potential to refine LLM efficiency and adaptability across diverse challenges.


    Check out the Paper and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 75k+ ML SubReddit.

    🚨 Recommended Open-Source AI Platform: ‘IntellAgent is a An Open-Source Multi-Agent Framework to Evaluate Complex Conversational AI System’ (Promoted)

    The post Can 1B LLM Surpass 405B LLM? Optimizing Computation for Small LLMs to Outperform Larger Models appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAnthropic AI Launches the Anthropic Economic Index: A Data-Driven Look at AI’s Economic Role
    Next Article Meet Huginn-3.5B: A New AI Reasoning Model with Scalable Latent Computation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 29, 2025
    Machine Learning

    Real-world applications of Amazon Nova Canvas for interior design and product photography

    May 29, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    MIT Researchers Propose Graph-PReFLexOR: A Machine Learning Model Designed for Graph-Native Reasoning in Science and Engineering

    Machine Learning

    OpenAI data breach: what we know, risks, and lessons for the future

    Artificial Intelligence

    The power of spread and rest patterns in JavaScript

    Development

    Mobile-Agent-E: A Hierarchical Multi-Agent Framework Combining Cognitive Science and AI to Redefine Complex Task Handling on Smartphones

    Machine Learning

    Highlights

    Best Free and Open Source Alternatives to Apple Passwords

    January 27, 2025

    Apple Passwords is a password manager application which lets users store and access encrypted account…

    Asus waarschuwt voor kritieke AiCloud-kwetsbaarheid in wifi-routers

    April 20, 2025

    The new iPhone SE is coming very soon: Specs, features, pricing, and more

    February 7, 2025

    CVE-2025-24338 – CtrlX OS Cross-Site Scripting (XSS)

    April 30, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.