Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 30, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 30, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 30, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 30, 2025

      Does Elden Ring Nightreign have crossplay or cross-platform play?

      May 30, 2025

      Cyberpunk 2077 sequel enters pre-production as Phantom Liberty crosses 10 million copies sold

      May 30, 2025

      EA has canceled yet another game, shuttered its developer, and started more layoffs

      May 30, 2025

      The Witcher 3: Wild Hunt reaches 60 million copies sold as work continues on The Witcher 4

      May 30, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      How Remix is shaking things up

      May 30, 2025
      Recent

      How Remix is shaking things up

      May 30, 2025

      Perficient at Kscope25: Let’s Meet in Texas!

      May 30, 2025

      Salesforce + Informatica: What It Means for Data Cloud and Our Customers

      May 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Does Elden Ring Nightreign have crossplay or cross-platform play?

      May 30, 2025
      Recent

      Does Elden Ring Nightreign have crossplay or cross-platform play?

      May 30, 2025

      Cyberpunk 2077 sequel enters pre-production as Phantom Liberty crosses 10 million copies sold

      May 30, 2025

      EA has canceled yet another game, shuttered its developer, and started more layoffs

      May 30, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»SHREC: A Physics-Based Machine Learning Approach to Time Series Analysis

    SHREC: A Physics-Based Machine Learning Approach to Time Series Analysis

    January 20, 2025

    Reconstructing unmeasured causal drivers of complex time series from observed response data represents a fundamental challenge across diverse scientific domains. Latent variables, including genetic regulators or environmental factors, are essential to determining a system’s dynamics but are rarely measured. Challenges with current approaches arise from data noise, the systems’ high dimensionality, and existing algorithms’ capacities in handling nonlinear interactions. This will greatly help in modeling, predicting, and controlling high-dimensional systems in systems biology, ecology, and fluid dynamics.

    The most widely used techniques for causal driver reconstruction usually rely on signal processing or machine learning frameworks. Some common ones include mutual information methods, neural network applications, and dynamic attractor reconstruction. While these techniques work well in some situations, they have significant limitations. Most demand large, high-quality datasets that are rarely found in real-world applications. They are very prone to measurement noise, resulting in low reconstruction accuracy. Some require computationally expensive algorithms and thus not suited for real-time applications. In addition, many models lack physical principles, reducing their interpretability and applicability across domains.

    The researchers from The University of Texas introduce a physics-based unsupervised learning framework called SHREC (Shared Recurrences) to reconstruct causal drivers from time series data. The approach is based on the theory of skew-product dynamical systems and topological data analysis. Innovation includes the use of recurrence events in time series to infer common causal structures between responses, the construction of a consensus recurrence graph that is traversed to expose the dynamics of the latent driver, and the introduction of a new network embedding that adapts to noisy and sparse datasets using fuzzy simplicial complexes. Unlike the existing methods, the SHREC framework well captures noisy and nonlinear data, requires minimal parameter tuning, and provides useful insight into the physical dynamics underlying driver-response systems.

    The SHREC algorithm is implemented in multiple stages. The measured response time series are mapped into weighted recurrence networks by topological embeddings, where an affinity matrix is constructed for each time series based on nearest neighbor distances and adaptive thresholds. The recurrence graphs are combined from individual time series to obtain a consensus graph that captures collective dynamics. Discrete-time drivers have been linked to decomposition by community detection algorithms, including the Leiden method, to provide distinct equivalence classes. For continuous drivers, on the other hand, the graph’s Laplacian decomposition reveals transient modes corresponding to states of drivers. The algorithm was tested on diverse data: gene expression, plankton abundances, and turbulent flows. It showed excellent reconstruction of drivers under challenging conditions like high noise and missing data. The structure of the framework is based on graph-based representations. Therefore, it avoids costly iterative gradient-based optimization and makes it computationally efficient.

    SHREC performed notably well and consistently on the benchmark-challenging datasets. The methodology successfully reconstructed causal determinants from gene expression datasets, thereby uncovering essential regulatory components, even in the presence of sparse and noisy data. In experiments involving turbulent flow, this approach successfully detected sinusoidal forcing factors, demonstrating superiority over traditional signal processing techniques. Regarding ecological datasets, SHREC revealed temperature-induced trends in plankton populations, notwithstanding considerable missing information, thus illustrating its resilience to incomplete and noisy data. The comparison with other approaches has highlighted SHREC’s increased accuracy and efficiency in computation, especially in the presence of higher noise levels and complex nonlinear dependencies. These findings highlight its extensive applicability and reliability in many fields.

    SHREC is a physics-based unsupervised learning framework that enables the reconstruction of unobserved causal drivers from complex time series data. This new approach deals with the severe drawbacks of contemporary techniques, which include noise susceptibility and high computational cost, by using recurrence structures and topological embeddings. The successful workability of SHREC on diverse datasets underlines its wide-ranging applicability with the ability to improve AI-based modeling in biology, physics, and engineering disciplines. This methodology improves the accuracy of causal driver reconstruction and, at the same time, puts in place a framework based on the principles of dynamical systems theory and sheds new light on essential characteristics of information transfer within interconnected systems.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 65k+ ML SubReddit.

    🚨 [Recommended Read] Nebius AI Studio expands with vision models, new language models, embeddings and LoRA (Promoted)

    The post SHREC: A Physics-Based Machine Learning Approach to Time Series Analysis appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleRilasciato il Kernel Linux 6.13: Novità e Miglioramenti
    Next Article Google AI Proposes a Fundamental Framework for Inference-Time Scaling in Diffusion Models

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 30, 2025
    Machine Learning

    World-Consistent Video Diffusion With Explicit 3D Modeling

    May 30, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    How to Enable Full-Width Layouts in Optimizely Commerce (Spire)

    Development

    The Persistence Problem: Why Exposed Credentials Remain Unfixed—and How to Change That

    Development

    The essential role of ‘human testers’ in leveraging generative AI for software testing

    Tech & Work

    Wholesale woven shirts | Long sleeve woven shirt | Short woven sleeve shirt

    Development

    Highlights

    Best Websites for Web Design Inspiration and Ideas

    July 27, 2024

    Welcome to the best websites where to find examples and ideas for web design inspiration.…

    South of Midnight is bringing its Southern Gothic visuals to Xbox and PC in just a few months

    January 23, 2025

    Generative AI is now a must-have tool for technology professionals

    December 24, 2024

    CVE-2025-4223 – WordPress Pagelayer Reflected Cross-Site Scripting

    May 24, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.