Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      Prompting Is A Design Act: How To Brief, Guide And Iterate With AI

      August 29, 2025

      Best React.js Development Services in 2025: Features, Benefits & What to Look For

      August 29, 2025

      Report: Samsung’s tri-fold phone, XR headset, and AI smart glasses to be revealed at Sep 29 Unpacked event

      September 1, 2025

      Are smart glasses with built-in hearing aids viable? My verdict after months of testing

      September 1, 2025

      These 7 smart plug hacks that saved me time, money, and energy (and how I set them up)

      September 1, 2025

      Amazon will sell you the iPhone 16 Pro for $250 off right now – how the deal works

      September 1, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Fake News Detection using Python Machine Learning (ML)

      September 1, 2025
      Recent

      Fake News Detection using Python Machine Learning (ML)

      September 1, 2025

      Common FP – A New JS Utility Lib

      August 31, 2025

      Call for Speakers – JS Conf Armenia 2025

      August 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Chrome on Windows 11 FINALLY Gets Touch Drag and Drop, Matching Native Apps

      August 31, 2025
      Recent

      Chrome on Windows 11 FINALLY Gets Touch Drag and Drop, Matching Native Apps

      August 31, 2025

      Fox Sports not Working: 7 Quick Fixes to Stream Again

      August 31, 2025

      Capital One Zelle not Working: 7 Fast Fixes

      August 31, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Rationale engineering generates a compact new tool for gene therapy

    Rationale engineering generates a compact new tool for gene therapy

    May 29, 2025

    Scientists at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have re-engineered a compact RNA-guided enzyme they found in bacteria into an efficient, programmable editor of human DNA. 

    The protein they created, called NovaIscB, can be adapted to make precise changes to the genetic code, modulate the activity of specific genes, or carry out other editing tasks. Because its small size simplifies delivery to cells, NovaIscB’s developers say it is a promising candidate for developing gene therapies to treat or prevent disease.

    The study was led by Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT who is also an investigator at the McGovern Institute and the Howard Hughes Medical Institute, and a core member of the Broad Institute. Zhang and his team reported their open-access work this month in the journal Nature Biotechnology.

    NovaIscB is derived from a bacterial DNA cutter that belongs to a family of proteins called IscBs, which Zhang’s lab discovered in 2021. IscBs are a type of OMEGA system, the evolutionary ancestors to Cas9, which is part of the bacterial CRISPR system that Zhang and others have developed into powerful genome-editing tools. Like Cas9, IscB enzymes cut DNA at sites specified by an RNA guide. By reprogramming that guide, researchers can redirect the enzymes to target sequences of their choosing.

    IscBs had caught the team’s attention not only because they share key features of CRISPR’s DNA-cutting Cas9, but also because they are a third of its size. That would be an advantage for potential gene therapies: compact tools are easier to deliver to cells, and with a small enzyme, researchers would have more flexibility to tinker, potentially adding new functionalities without creating tools that were too bulky for clinical use.

    From their initial studies of IscBs, researchers in Zhang’s lab knew that some members of the family could cut DNA targets in human cells. None of the bacterial proteins worked well enough to be deployed therapeutically, however: the team would have to modify an IscB to ensure it could edit targets in human cells efficiently without disturbing the rest of the genome.

    To begin that engineering process, Soumya Kannan, a graduate student in Zhang’s lab who is now a junior fellow at the Harvard Society of Fellows, and postdoc Shiyou Zhu first searched for an IscB that would make good starting point. They tested nearly 400 different IscB enzymes that can be found in bacteria. Ten were capable of editing DNA in human cells.

    Even the most active of those would need to be enhanced to make it a useful genome editing tool. The challenge would be increasing the enzyme’s activity, but only at the sequences specified by its RNA guide. If the enzyme became more active, but indiscriminately so, it would cut DNA in unintended places. “The key is to balance the improvement of both activity and specificity at the same time,” explains Zhu.

    Zhu notes that bacterial IscBs are directed to their target sequences by relatively short RNA guides, which makes it difficult to restrict the enzyme’s activity to a specific part of the genome. If an IscB could be engineered to accommodate a longer guide, it would be less likely to act on sequences beyond its intended target.

    To optimize IscB for human genome editing, the team leveraged information that graduate student Han Altae-Tran, who is now a postdoc at the University of Washington, had learned about the diversity of bacterial IscBs and how they evolved. For instance, the researchers noted that IscBs that worked in human cells included a segment they called REC, which was absent in other IscBs. They suspected the enzyme might need that segment to interact with the DNA in human cells. When they took a closer look at the region, structural modeling suggested that by slightly expanding part of the protein, REC might also enable IscBs to recognize longer RNA guides.

    Based on these observations, the team experimented with swapping in parts of REC domains from different IscBs and Cas9s, evaluating how each change impacted the protein’s function. Guided by their understanding of how IscBs and Cas9s interact with both DNA and their RNA guides, the researchers made additional changes, aiming to optimize both efficiency and specificity.

    In the end, they generated a protein they called NovaIscB, which was over 100 times more active in human cells than the IscB they had started with, and that had demonstrated good specificity for its targets.

    Kannan and Zhu constructed and screened hundreds of new IscBs before arriving at NovaIscB — and every change they made to the original protein was strategic. Their efforts were guided by their team’s knowledge of IscBs’s natural evolution, as well as predictions of how each alteration would impact the protein’s structure, made using an artificial intelligence tool called AlphaFold2. Compared to traditional methods of introducing random changes into a protein and screening for their effects, this rational engineering approach greatly accelerated the team’s ability to identify a protein with the features they were looking for.

    The team demonstrated that NovaIscB is a good scaffold for a variety of genome editing tools. “It biochemically functions very similarly to Cas9, and that makes it easy to port over tools that were already optimized with the Cas9 scaffold,” Kannan says. With different modifications, the researchers used NovaIscB to replace specific letters of the DNA code in human cells and to change the activity of targeted genes.

    Importantly, the NovaIscB-based tools are compact enough to be easily packaged inside a single adeno-associated virus (AAV) — the vector most commonly used to safely deliver gene therapy to patients. Because they are bulkier, tools developed using Cas9 can require a more complicated delivery strategy.

    Demonstrating NovaIscB’s potential for therapeutic use, Zhang’s team created a tool called OMEGAoff that adds chemical markers to DNA to dial down the activity of specific genes. They programmed OMEGAoff to repress a gene involved in cholesterol regulation, then used AAV to deliver the system to the livers of mice, leading to lasting reductions in cholesterol levels in the animals’ blood.

    The team expects that NovaIscB can be used to target genome editing tools to most human genes, and look forward to seeing how other labs deploy the new technology. They also hope others will adopt their evolution-guided approach to rational protein engineering. “Nature has such diversity, and its systems have different advantages and disadvantages,” Zhu says. “By learning about that natural diversity, we can make the systems we are trying to engineer better and better.”

    This study was funded, in part, by the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT, Broad Institute Programmable Therapeutics Gift Donors, Pershing Square Foundation, William Ackman, Neri Oxman, the Phillips family, and J. and P. Poitras.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleWindows 11 KB5058499 24H2 adds features, direct download links (.msu)
    Next Article An anomaly detection framework anyone can use

    Related Posts

    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    September 1, 2025
    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    September 1, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Samsung’s next Galaxy S25 phone has an Ultra-level camera – and a free preorder deal

    News & Updates

    Windows 11 new Start menu won’t let you create new Categories, clubs apps as “Other”

    Operating Systems

    CVE-2024-22653 – Yasm NULL Pointer Dereference Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    MAINGEAR ULTIMA 18 Brings RTX 5090 Power & 4K 200Hz Display

    Operating Systems

    Highlights

    Development

    Creating a Brand Kit in Stream: Why It Matters and How It helps Organizations

    July 15, 2025

    In today’s digital-first world, brand consistency is more than a visual guideline, it’s a strategic…

    Best practices to handle AWS DMS tasks during PostgreSQL upgrades

    April 21, 2025

    Nation Group Hit by 200 Million Cyberattacks Amid Thai-Cambodian Tensions

    July 28, 2025

    Uploading Datasets to Hugging Face: A Step-by-Step Guide

    April 17, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.