Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      CodeSOD: Functionally, a Date

      September 16, 2025

      Creating Elastic And Bounce Effects With Expressive Animator

      September 16, 2025

      Microsoft shares Insiders preview of Visual Studio 2026

      September 16, 2025

      From Data To Decisions: UX Strategies For Real-Time Dashboards

      September 13, 2025

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      Building personal apps with open source and AI

      September 12, 2025

      What Can We Actually Do With corner-shape?

      September 12, 2025

      Craft, Clarity, and Care: The Story and Work of Mengchu Yao

      September 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Can I use React Server Components (RSCs) today?

      September 16, 2025
      Recent

      Can I use React Server Components (RSCs) today?

      September 16, 2025

      Perficient Named among Notable Providers in Forrester’s Q3 2025 Commerce Services Landscape

      September 16, 2025

      Sarah McDowell Helps Clients Build a Strong AI Foundation Through Salesforce

      September 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      I Ran Local LLMs on My Android Phone

      September 16, 2025
      Recent

      I Ran Local LLMs on My Android Phone

      September 16, 2025

      DistroWatch Weekly, Issue 1139

      September 14, 2025

      sudo vs sudo-rs: What You Need to Know About the Rust Takeover of Classic Sudo Command

      September 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Novel method detects microbial contamination in cell cultures

    Novel method detects microbial contamination in cell cultures

    April 25, 2025
    Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with MIT, A*STAR Skin Research Labs, and the National University of Singapore, have developed a novel method that can quickly and automatically detect and monitor microbial contamination in cell therapy products (CTPs) early on during the manufacturing process. By measuring ultraviolet light absorbance of cell culture fluids and using machine learning to recognize light absorption patterns associated with microbial contamination, this preliminary testing method aims to reduce the overall time taken for sterility testing and, subsequently, the time patients need to wait for CTP doses. This is especially crucial where timely administration of treatments can be life-saving for terminally ill patients.
     
    Cell therapy represents a promising new frontier in medicine, especially in treating diseases such as cancers, inflammatory diseases, and chronic degenerative disorders by manipulating or replacing cells to restore function or fight disease. However, a major challenge in CTP manufacturing is quickly and effectively ensuring that cells are free from contamination before being administered to patients.
     
    Existing sterility testing methods, based on microbiological methods,  are labor-intensive and require up to 14 days to detect contamination, which could adversely affect critically ill patients who need immediate treatment. While advanced techniques such as rapid microbiological methods (RMMs) can reduce the testing period to seven days, they still require complex processes such as cell extraction and growth enrichment mediums, and they are highly dependent on skilled workers for procedures such as sample extraction, measurement, and analysis. This creates an urgent need for new methods that offer quicker outcomes without compromising the quality of CTPs, meet the patient-use timeline, and use a simple workflow that does not require additional preparation.
     
    In a paper titled “Machine learning aided UV absorbance spectroscopy for microbial contamination in cell therapy products,” published in the journal Scientific Reports, SMART CAMP researchers described how they combined UV absorbance spectroscopy to develop a machine learning-aided method for label-free, noninvasive, and real-time detection of cell contamination during the early stages of manufacturing.
     
    This method offers significant advantages over both traditional sterility tests and RMMs, as it eliminates the need for staining of cells to identify labelled organisms, avoids the invasive process of cell extraction, and delivers results in under half-an-hour. It provides an intuitive, rapid “yes/no” contamination assessment, facilitating automation of cell culture sampling with a simple workflow. Furthermore, the developed method does not require specialized equipment, resulting in lower costs.
     
    “This rapid, label-free method is designed to be a preliminary step in the CTP manufacturing process as a form of continuous safety testing, which allows users to detect contamination early and implement timely corrective actions, including the use of RMMs only when possible contamination is detected. This approach saves costs, optimizes resource allocation, and ultimately accelerates the overall manufacturing timeline,” says Shruthi Pandi Chelvam, senior research engineer at SMART CAMP and first author of the paper.
     
    “Traditionally, cell therapy manufacturing is labor-intensive and subject to operator variability. By introducing automation and machine learning, we hope to streamline cell therapy manufacturing and reduce the risk of contamination. Specifically, our method supports automated cell culture sampling at designated intervals to check for contamination, which reduces manual tasks such as sample extraction, measurement, and analysis. This enables cell cultures to be monitored continuously and contamination to be detected at early stages,” says Rajeev Ram, the Clarence J. LeBel Professor in Electrical Engineering and Computer Science at MIT, a principal investigator at SMART CAMP, and the corresponding author of the paper.
     
    Moving forward, future research will focus on broadening the application of the method to encompass a wider range of microbial contaminants, specifically those representative of current good manufacturing practices environments and previously identified CTP contaminants. Additionally, the model’s robustness can be tested across more cell types apart from MSCs. Beyond cell therapy manufacturing, this method can also be applied to the food and beverage industry as part of microbial quality control testing to ensure food products meet safety standards.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleWindows 11 KB5055627 24H2 fixes BSODs, direct download .msu
    Next Article Artificial intelligence enhances air mobility planning

    Related Posts

    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    September 14, 2025
    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    September 14, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    FableMatic helps parents track reading comprehension through AI-generated stories

    Web Development

    Linux’s Ascendancy: Charting the Open-Source Surge in the Desktop OS Arena

    Learning Resources

    Some teachers are using AI to grade their students, Anthropic finds – why that matters

    News & Updates

    ChatGPT Pro adds cloud storage connectors for Google Drive, Dropbox, SharePoint, Box

    Operating Systems

    Highlights

    CVE-2025-47533 – Graphina CSRF PHP Local File Inclusion Vulnerability

    May 7, 2025

    CVE ID : CVE-2025-47533

    Published : May 7, 2025, 3:16 p.m. | 4 hours, 28 minutes ago

    Description : Cross-Site Request Forgery (CSRF) vulnerability in Iqonic Design Graphina allows PHP Local File Inclusion. This issue affects Graphina: from n/a through 3.0.4.

    Severity: 8.1 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    The 5 gadgets that got me through marathons and obstacle races (and why they work)

    June 16, 2025

    How to Build an Always Listening Network Connectivity Checker in Flutter using BLoC

    August 18, 2025

    jdSystemMonitor is a desktop-independent system monitor for Linux

    May 5, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.