Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Double-Edged Sustainability Sword Of AI In Web Design

      August 20, 2025

      Top 12 Reasons Enterprises Choose Node.js Development Services for Scalable Growth

      August 20, 2025

      GitHub’s coding agent can now be launched from anywhere on platform using new Agents panel

      August 20, 2025

      Stop writing tests: Automate fully with Generative AI

      August 19, 2025

      I’m a diehard Pixel fan, but I’m not upgrading to the Pixel 10. Here’s why

      August 21, 2025

      Google Pixel Watch 4 vs. Samsung Galaxy Watch 8: I compared the two best Androids, and here’s the winner

      August 21, 2025

      Get a free Amazon gift card up to $300 when you preorder a new Google Pixel 10 phone – here’s how

      August 21, 2025

      Everything announced at Made by Google 2025: Pixel 10 Pro, Fold, Watch 4, and more

      August 21, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Copy Errors as Markdown to Share With AI in Laravel 12.25

      August 21, 2025
      Recent

      Copy Errors as Markdown to Share With AI in Laravel 12.25

      August 21, 2025

      Deconstructing the Request Lifecycle in Sitecore Headless – Part 2: SSG and ISR Modes in Next.js

      August 20, 2025

      Susan Etlinger, AI Analyst and Industry Watcher on Building Trust

      August 20, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      TerraMaster D1 SSD Plus Review: Experience a Faster External SSD

      August 20, 2025
      Recent

      TerraMaster D1 SSD Plus Review: Experience a Faster External SSD

      August 20, 2025

      Microsoft is investigating Windows 11 KB5063878 SSD data corruption/failure issue

      August 20, 2025

      Microsoft Surface Won’t Turn On: 6 Tested Solutions to Fix

      August 20, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Databases»Agentic Workflows in Insurance Claim Processing

    Agentic Workflows in Insurance Claim Processing

    May 21, 2025

    In 2025, agentic AI is transforming the insurance industry, enabling autonomous systems to perceive, reason, and act independently to achieve complex objectives. Insurers are heavily investing in these technologies to overcome legacy system limitations, deliver hyper-personalized customer experiences, and to capitalize on the $79.86 billion AI insurance market projected by 2032.

    Central to this transformation is efficient claim processing. AI tools like natural language processing, image classification, and vector embedding help insurers effectively manage claim-related data. These capabilities generate precise catastrophe impact assessments, expedite claim routing with richer metadata, prevent litigation through better analysis, and minimize financial losses using more accurate risk evaluations.

    Because AI’s promises often sound compelling—but fall short when moving from experimentation to real-world production—this post explores how an AI agent can manage a multi-step claim processing workflow.

    In this workflow, the agent manages accident photos, assesses damage, and verifies insurance coverage to enhance process efficiency and improve customer satisfaction. This system employs large language models (LLMs) to analyze policy information and related documents provided by MongoDB Atlas Vector Search, with the outcomes stored in the Atlas database.

    Creating a work order for claim handlers

    The defining characteristic of AI agents, which is what sets them apart from simply prompting an LLM, is autonomy. The ability to be goal-driven and to operate without precise instructions makes AI agents powerful allies for humans, who can now delegate tedious tasks like never before.

    But each agent has a different degree of autonomy, and building such systems is a tradeoff between reliability and prescriptiveness. Since LLMs—which can be thought of as the agent’s brain—tend to hallucinate and behave nondeterministically, developers need to be very cautious. Too much “freedom” can lead to unexpected outcomes. On the other hand, including too many constraints, instructions, or hardcoded steps defeats the purpose of building agents.

    To help agents understand their context, it is important to craft a prompt that describes their scope and goals. This is part of the prompt we’ve used for this exercise:

    “You are a claims handler assistant for an insurance company. Your goal is to help claim handlers understand the scope of the current claim and provide relevant information to help them make an informed decision. In particular, based on the description of the accident, you need to fetch and summarize relevant insurance guidelines so that the handler can determine the coverage and process the claim accordingly. Present your findings in a clear and extremely concise manner.”

    In addition to the definition of the tasks, it is also important to give instructions on the tools available to the agent and how to use them. Our system is pretty basic, featuring only two tools: Atlas Vector Search and write to the database (see Figure 1).

    Figure 1. Agentic workflow.
    Diagram showing the agentic workflow utilized. On the left, the customer takes and submits a photo of the damages. The AI then ingests the photos, and files them in the claim summary while also finding the related policy. This information is then provided to the claim handler.

    The Vector Search step maps the vectorized image description to the vectorized related policy, which also contains the description of the coverages for that class of accident.

    The policy and the related coverages are used by the agent to figure out the recommended next actions and assign a work order to a claim handler. This information is persisted in the database using the second tool, write to the database.

    Figure 2. Claim handler workflow.
    Gif showing how the application works for the customer during their interactions with the claim handler.

    What does the future hold?

    In our example, the degree of autonomy is quite low, and for the agent, it boils down to deciding when to use which tool. In real-life scenarios, such systems, even if simple, can save a lot of manual work. They eliminate the need for claim handlers to manually locate related policies and coverages, a cumbersome and error-prone process that involves searching multiple systems, reading lengthy PDFs, and summarizing all their findings.

    Agents are still in their infancy and require handholding, but they have the potential to act with a degree of autonomy never before seen in software. AI agents can reason, perceive, and act—and their performance is improving at a breakneck pace.

    The insurance industry (like everybody else!) needs to make sure it’s ready to start experimenting and to embrace change. This can only happen if systems and processes are aligned on one imperative: “make the data easier to work with.”

    To learn more about integrating AI into insurance systems with MongoDB, check out the following resources:

    • The MongoDB Ebook: Innovate With AI: The Future Enterprise

    • The MongoDB Blog: AI-Powered Call Centers: A New Era of Customer Service

    • The MongoDB Youtube Channel: Unlock PDF Search in Insurance with MongoDB & SuperDuperDB

    Source: Read More

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to configure a Linked Server between Amazon RDS for SQL Server and Teradata database
    Next Article Russian Hackers Exploit Email and VPN Vulnerabilities to Spy on Ukraine Aid Logistics

    Related Posts

    Development

    Copy Errors as Markdown to Share With AI in Laravel 12.25

    August 21, 2025
    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    August 21, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2024-37743 – KnowledgeGPT Arbitrary Code Execution Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining

    Machine Learning

    CVE-2025-6029 & CVE-2025-6030: Replay Attacks Expose Vulnerabilities in KIA and Autoeastern Smart Keyless Entry Systems

    Security

    CVE-2025-5564 – WordPress GC Social Wall Stored Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-41653 – Citrix Web Server Denial of Service

    May 27, 2025

    CVE ID : CVE-2025-41653

    Published : May 27, 2025, 9:15 a.m. | 4 hours, 5 minutes ago

    Description : An unauthenticated remote attacker can exploit a denial-of-service vulnerability in the device’s web server functionality by sending a specially crafted HTTP request with a malicious header, potentially causing the server to crash or become unresponsive.

    Severity: 7.5 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    You can now remove Android/iPhone from Phone Link app & Mobile devices setting

    May 13, 2025

    KDE Plasma Adds Rounded Bottom Window Corners to Apps

    July 21, 2025

    You Can Now Use AI Agents to Generate Code in Microsoft Power Apps

    July 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.