Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 1, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 1, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 1, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 1, 2025

      7 MagSafe accessories that I recommend every iPhone user should have

      June 1, 2025

      I replaced my Kindle with an iPad Mini as my ebook reader – 8 reasons why I don’t regret it

      June 1, 2025

      Windows 11 version 25H2: Everything you need to know about Microsoft’s next OS release

      May 31, 2025

      Elden Ring Nightreign already has a duos Seamless Co-op mod from the creator of the beloved original, and it’ll be “expanded on in the future”

      May 31, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Student Record Android App using SQLite

      June 1, 2025
      Recent

      Student Record Android App using SQLite

      June 1, 2025

      When Array uses less memory than Uint8Array (in V8)

      June 1, 2025

      Laravel 12 Starter Kits: Definite Guide Which to Choose

      June 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Photobooth is photobooth software for the Raspberry Pi and PC

      June 1, 2025
      Recent

      Photobooth is photobooth software for the Raspberry Pi and PC

      June 1, 2025

      Le notizie minori del mondo GNU/Linux e dintorni della settimana nr 22/2025

      June 1, 2025

      Rilasciata PorteuX 2.1: Novità e Approfondimenti sulla Distribuzione GNU/Linux Portatile Basata su Slackware

      June 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»CMU Researchers Introduce TNNGen: An AI Framework that Automates Design of Temporal Neural Networks (TNNs) from PyTorch Software Models to Post-Layout Netlists

    CMU Researchers Introduce TNNGen: An AI Framework that Automates Design of Temporal Neural Networks (TNNs) from PyTorch Software Models to Post-Layout Netlists

    December 30, 2024

    Designing neuromorphic sensory processing units (NSPUs) based on Temporal Neural Networks (TNNs) is a highly challenging task due to the reliance on manual, labor-intensive hardware development processes. TNNs have been identified as highly promising for real-time edge AI applications, mainly because they are energy-efficient and bio-inspired. However, available methodologies lack automation and are not very accessible. Consequently, the design process becomes complex, time-consuming, and requires specialized knowledge. It is through overcoming these challenges that one can unlock the full potential of TNNs for efficient and scalable processing of sensory signals. 

    The current approaches to TNN development are fragmented workflows, as software simulations and hardware designs are handled separately. Advancements such as ASAP7 and TNN7 libraries made some aspects of hardware efficient but remain proprietary tools that require significant expertise. The fragmentation of the process restricts usability, prevents the easier exploration of design configurations with increased computational overhead, and can’t be used for more application-specific rapid prototyping or large-scale deployment purposes.

    Researchers at Carnegie Mellon University introduce TNNGen, a unified and automated framework for designing TNN-based NSPUs. The innovation lies in the integration of software-based functional simulation with hardware generation in a single streamlined workflow. It combines a PyTorch-based simulator, modeling spike-timing dynamics and evaluating application-specific metrics, with a hardware generator that automates RTL generation and layout design using PyVerilog. Through the utilization of TNN7 custom macros and the integration of a variety of libraries, this framework realizes considerable enhancements in simulation velocity as well as physical design. Additionally, its predictive abilities facilitate precise forecasting of silicon metrics, thereby diminishing the dependency on computationally demanding EDA tools. 

    TNNGen is organized around two principal elements. The functional simulator, constructed using PyTorch, accommodates adaptable TNN configurations, allowing for swift examination of various model architectures. It has GPU acceleration and accurate spike-timing modeling, thus ensuring high simulation speed and accuracy. The hardware generator converts PyTorch models into optimized RTL and physical layouts. Using libraries such as TNN7 and customized TCL scripts, it automates synthesis and place-and-route processes while being compatible with multiple technology nodes like FreePDK45 and ASAP7. 

    TNNGen achieves excellent performance in both clustering accuracy and hardware efficiency. The TNN designs for time-series clustering tasks show competitive performance with the best deep-learning techniques while drastically reducing the utilization of computational resources. The approach brings major energy efficiency improvements, obtaining a reduction in die area and leakage power compared to conventional approaches. In addition, the runtime of the design is dramatically reduced, especially for larger designs, which benefit most from the optimized workflows. Moreover, the comprehensive forecasting instrument provides accurate estimations of hardware parameters, allowing researchers to evaluate design viability without the necessity of engaging in physical hardware procedures. Taken together, these findings position TNNGen as a viable approach for streamlining and expediting the creation of energy-efficient neuromorphic systems. 

    Hostinger

    TNNGen is the next step in the fully automated development of TNN-based NSPUs by unifying simulation and hardware generation into an accessible, efficient framework. The approach addressed key challenges in the manual design process and made this tool much more scalable and usable for edge AI applications. Future work would involve extending its capabilities toward support for more complex TNN architectures and a much wider range of applications to become a critical enabler of sustainable neuromorphic computing. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

    The post CMU Researchers Introduce TNNGen: An AI Framework that Automates Design of Temporal Neural Networks (TNNs) from PyTorch Software Models to Post-Layout Netlists appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBrowserStack Accessibility Testing Made Simple
    Next Article Researchers from MIT, Sakana AI, OpenAI and Swiss AI Lab IDSIA Propose a New Algorithm Called Automated Search for Artificial Life (ASAL) to Automate the Discovery of Artificial Life Using Vision-Language Foundation Models

    Related Posts

    Artificial Intelligence

    Markus Buehler receives 2025 Washington Award

    June 1, 2025
    Artificial Intelligence

    LWiAI Podcast #201 – GPT 4.5, Sonnet 3.7, Grok 3, Phi 4

    June 1, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Testing 21 search criteria and their combinations

    Development

    CoMotion: Concurrent Multi-Person 3D Motion

    Machine Learning

    Meta resumes AI training using EU user data

    Artificial Intelligence

    One of the best tablets for entertainment I’ve tested is not an iPad Air or Samsung Galaxy Tab

    Development
    Hostinger

    Highlights

    Development

    Converting Collections to Queries in Laravel Using toQuery()

    December 20, 2024

    Working with large datasets in Laravel often requires flexibility in how we manipulate and process…

    Collective #889

    December 13, 2024

    CVE-2024-46546 – NEXTU FLETA AX1500 WIFI6 Router Stack Overflow Denial of Service

    April 22, 2025

    ESET APT Activity Report Q2 2024–Q3 2024: Key findings

    November 15, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.