Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 8, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 8, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 8, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 8, 2025

      Xbox handheld leaks in new “Project Kennan” photos from the FCC — plus an ASUS ROG Ally 2 prototype with early specs

      May 8, 2025

      OpenAI plays into Elon Musk’s hands, ditching for-profit plan — but Sam Altman doesn’t have Microsoft’s blessing yet

      May 8, 2025

      “Are we all doomed?” — Fiverr CEO Micha Kaufman warns that AI is coming for all of our jobs, just as Bill Gates predicted

      May 8, 2025

      I went hands-on with dozens of indie games at Gamescom Latam last week — You need to wishlist these 7 titles right now

      May 8, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      NativePHP Hit $100K — And We’re Just Getting Started 🚀

      May 8, 2025
      Recent

      NativePHP Hit $100K — And We’re Just Getting Started 🚀

      May 8, 2025

      Mastering Node.js Streams: The Ultimate Guide to Memory-Efficient File Processing

      May 8, 2025

      Sitecore PowerShell commands – XM Cloud Content Migration

      May 8, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      8 Excellent Free Books to Learn Julia

      May 8, 2025
      Recent

      8 Excellent Free Books to Learn Julia

      May 8, 2025

      Janus is a general purpose WebRTC server

      May 8, 2025

      12 Best Free and Open Source Food and Drink Software

      May 8, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Deep Learning and Vocal Fold Analysis: The Role of the GIRAFE Dataset

    Deep Learning and Vocal Fold Analysis: The Role of the GIRAFE Dataset

    December 26, 2024

    Semantic segmentation of the glottal area from high-speed videoendoscopic (HSV) sequences presents a critical challenge in laryngeal imaging. The field faces a significant shortage of high-quality, annotated datasets for training robust segmentation models. Therefore, the development of automatic segmentation technologies is hindered by this limitation and the creation of diagnostic tools such as Facilitative Playbacks (FPs) that are crucial in assessing vibratory dynamics in vocal folds. The limited availability of extensive datasets is a challenge to clinicians while trying to make an accurate diagnosis and proper treatment of voice disorders, generating a vast void in both research works and clinical practices.

    Current techniques for glottal segmentation include the classical image processing techniques, which include active contours and watershed transformations. Most of these techniques generally require a considerable amount of manual input and cannot cope with varying illumination conditions or complex scenarios of glottis closure. On the other hand, deep learning models, although promising, are limited by the need for large and high-quality annotated datasets. Datasets like BAGLS, which are available publicly, provide grayscale recordings, but they are less diverse and granular, which in turn reduces their generalization ability for complex segmentation tasks. These factors underline the urgent need for a dataset that offers better versatility, more complex features, and broader clinical relevance.

    Researchers from the University of Brest, University of Patras, and Universidad Politécnica de Madrid introduce the GIRAFE dataset to address the limitations of existing resources. GIRAFE is a robust and comprehensive repository comprising 65 HSV recordings from 50 patients, each meticulously annotated with segmentation masks. In contrast to other datasets, the advantage of GIRAFE is that it offers color HSV recordings, which makes subtle anatomical and pathological features visually detectable. This resource enables researchers to make high-resolution assessments involving classical segmentation approaches, such as InP and Loh, and the recent deep neural architectures, such as UNet and SwinUnetV2. Apart from high-resolution segmentation, this work also facilitates Facilitative Playbacks, including GAW, GVG, and PVG, which are the most important media through which vibratory modal patterns in the vocal fold could be visualized to learn more about vocal-fold phonatory dynamics.

    The GIRAFE dataset comprises highly extensive features suitable for a wide variety of research. It comprises 760 frames expert-validated and annotated; such a setup allows for proper training and evaluation using correct segmentation masks. This dataset incorporates both traditional image processing techniques such as InP and Loh and also advanced deep learning architectures. HSV recordings are captured at a high temporal resolution of 4000 frames per second with a spatial resolution of 256×256 pixels, ensuring detailed analysis of vocal fold dynamics. The dataset is organized into structured directories, including \Raw_Data, \Seg_FP-Results, and \Training, facilitating ease of access and integration into research pipelines. This combination of systematic arrangement with color recordings makes it easier to view glottal characteristics and allows the exploration of complex vibratory patterns in a wide range of clinical conditions.

    The GIRAFE dataset showed its efficiency in the further advancement of segmentation techniques with full validation using both traditional approaches and deep learning. Traditional segmentation techniques, such as the InP method, performed well across different challenging cases, indicating that they are robust and can handle complex cases. Deep learning models like UNet and SwinUnetV2 have also demonstrated good performance; however, UNet outperformed the others in segmentation accuracy in simpler conditions. The diversity of the dataset, containing various pathologies, illumination conditions, and anatomical variations, made it a benchmark resource. These results confirm that the dataset can contribute to improved development and assessment of segmentation methods and support innovation in clinical laryngeal imaging applications.

    The GIRAFE dataset represents an important milestone in the landscape of laryngeal imaging research. With its inclusion of color HSV recordings, diverse annotations, and the integration of both traditional and deep learning methodologies, this dataset addresses the limitations inherent in the current datasets and sets a new benchmark within the domain. This dataset helps further bridge traditional and modern approaches while providing a dependable basis for the advancement of sophisticated segmentation methods and diagnostic instruments. Its contributions can potentially change the examination and management of voice disorders, and thus, it would be a great source for clinicians and researchers alike looking to advance the field of vocal fold dynamics and related diagnostics.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

    The post Deep Learning and Vocal Fold Analysis: The Role of the GIRAFE Dataset appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCoordTok: A Scalable Video Tokenizer that Learns a Mapping from Co-ordinate-based Representations to the Corresponding Patches of Input Videos
    Next Article aidesk.pro

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 9, 2025
    Security

    Microsoft Patches Four Critical Azure and Power Apps Vulnerabilities, Including CVSS 10 Privilege Escalation

    May 9, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Enhancing AI Safety and Reliability through Short-Circuiting Techniques

    Development

    Distribution Release: SysLinuxOS 12.4

    Development

    Mozilla Thunderbird Pro: un client email open source che evolve in una piattaforma completa

    Linux

    Cache-Augmented Generation: Leveraging Extended Context Windows in Large Language Models for Retrieval-Free Response Generation

    Machine Learning

    Highlights

    Billions of Apple Devices at Risk from “AirBorne” AirPlay Vulnerabilities

    May 3, 2025

    Billions of Apple Devices at Risk from “AirBorne” AirPlay Vulnerabilities

    Oligo Security uncovers “AirBorne,” a set of 23 vulnerabilities in Apple AirPlay affecting billions of devices. Learn how these flaws enable remote control (RCE) and data theft on iPhones, Macs, CarPl …
    Read more

    Published Date:
    May 03, 2025 (2 hours, 45 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-24132

    CVE-2025-24271

    CVE-2025-24252

    CVE-2025-24129

    Microsoft Edge started 2024 with a ‘new’ name. The browser starts 2025 asking for beta testers.

    January 3, 2025

    15 Best Free and Open Source File Synchronization Tools

    December 8, 2024

    How Top HR Agencies Build Trust Through Logo Designs

    June 18, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.