Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»How AI Models Learn to Solve Problems That Humans Can’t

    How AI Models Learn to Solve Problems That Humans Can’t

    December 20, 2024

    Natural Language processing uses large language models (LLMs) to enable applications such as language translation, sentiment analysis, speech recognition, and text summarization. These models depend on human feedback-based supervised data, but relying on unsupervised data becomes necessary as they surpass human capabilities. However, the issue of alignment arises as the models get more complex and nuanced. Researchers at Carnegie Mellon University, Peking University, MIT-IBM Watson AI Lab, University of Cambridge, Max Planck Institute for Intelligent Systems, and UMass Amherst have developed the Easy-to-Hard Generalization (E2H) methodology that tackles the problem of alignment in complex tasks without relying on human feedback. 

    Traditional alignment techniques rely heavily on supervised fine-tuning and Reinforcement Learning from Human Feedback (RLHF). This reliance on human capabilities serves as a hindrance when scaling these systems, as collecting high-quality human feedback is labor-intensive and costly. Furthermore, the generalization of these models to scenarios beyond learned behaviors is challenging. Therefore, there is an urgent need for a methodology that can accomplish complex tasks without requiring exhaustive human supervision.

    The proposed solution, Easy-to-Hard Generalization, employs a three-step methodology to achieve scalable task generalization:

    1. Process-Supervised Reward Models (PRMs): The models are trained on simple human-level tasks. These trained models then evaluate and guide the problem-solving capability of AI on higher-level complex tasks. 
    2. Easy-to-Hard Generalization: The models are gradually exposed to more complex tasks as they train. Predictions and evaluations from the easier tasks are used to guide learning on harder ones.
    3. Iterative Refinement: The models are adjusted based on the feedback provided by the PRMs.

    This learning process with iterative refinement enables AI to shift from human-feedback-dependent models to reduced human annotations. Generalization of tasks that deviate from the learned behavior is smoother. Thus, this method optimizes AI’s performance in situations where human engagement becomes obscure.

    Performance comparison shows significant improvements on the MATH500 benchmark, a 7b process-supervised RL model achieved 34.0% accuracy, while a 34b model reached 52.5% accuracy, using only human supervision on easy problems. The method demonstrated effectiveness on the APPS coding benchmark as well. These results suggest comparable or superior alignment outcomes to RLHF while significantly reducing the need for human-labeled data on complex tasks.

    This research addresses the critical challenge of AI alignment beyond human supervision by introducing an innovative, easy-to-hard generalization framework. The proposed method demonstrates promising results in enabling AI systems to tackle increasingly complex tasks while aligning with human values. Notable strengths include its novel approach to scalable alignment, effectiveness across domains such as mathematics and coding, and potential to address limitations of current alignment methods. However, further validation in diverse, real-world scenarios is necessary. Overall, this work marks a significant step toward developing AI systems that can safely and effectively operate without direct human supervision, paving the way for more advanced and aligned AI technologies.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

    The post How AI Models Learn to Solve Problems That Humans Can’t appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMeet Moxin LLM 7B: A Fully Open-Source Language Model Developed in Accordance with the Model Openness Framework (MOF)
    Next Article Scaling Language Model Evaluation: From Thousands to Millions of Tokens with BABILong

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-48187 – RAGFlow Authentication Bypass

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Apple Appeals App Store Ruling in Epic Games Case

    Security

    Data Structures & Algorithms in Swift [SUBSCRIBER]

    Learning Resources

    5 creative effects to upgrade your animated portfolio

    Development

    Conversation intelligence platform Echo AI integrates Speech AI to extract key voice of customer insights

    Artificial Intelligence

    Highlights

    Linux

    Rilasciato Qt 6.9: il framework per interfacce grafiche si aggiorna con prestazioni potenziate e nuovo supporto emoji

    April 3, 2025

    Qt è un framework multi-piattaforma per lo sviluppo di applicazioni con interfacce grafiche, distribuito sia…

    New U.S. DoJ Rule Halts Bulk Data Transfers to Adversarial Nations to Protect Privacy

    December 31, 2024

    The Good, Bad and The Ugly

    August 31, 2024

    LWiAI Podcast #204 – OpenAI Audio, Rubin GPUs, MCP

    March 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.