Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 15, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 15, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 15, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 15, 2025

      Intel’s latest Arc graphics driver is ready for DOOM: The Dark Ages, launching for Premium Edition owners on PC today

      May 15, 2025

      NVIDIA’s drivers are causing big problems for DOOM: The Dark Ages, but some fixes are available

      May 15, 2025

      Capcom breaks all-time profit records with 10% income growth after Monster Hunter Wilds sold over 10 million copies in a month

      May 15, 2025

      Microsoft plans to lay off 3% of its workforce, reportedly targeting management cuts as it changes to fit a “dynamic marketplace”

      May 15, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      A cross-platform Markdown note-taking application

      May 15, 2025
      Recent

      A cross-platform Markdown note-taking application

      May 15, 2025

      AI Assistant Demo & Tips for Enterprise Projects

      May 15, 2025

      Celebrating Global Accessibility Awareness Day (GAAD)

      May 15, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Intel’s latest Arc graphics driver is ready for DOOM: The Dark Ages, launching for Premium Edition owners on PC today

      May 15, 2025
      Recent

      Intel’s latest Arc graphics driver is ready for DOOM: The Dark Ages, launching for Premium Edition owners on PC today

      May 15, 2025

      NVIDIA’s drivers are causing big problems for DOOM: The Dark Ages, but some fixes are available

      May 15, 2025

      Capcom breaks all-time profit records with 10% income growth after Monster Hunter Wilds sold over 10 million copies in a month

      May 15, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»ProteinZen: An All-Atom Protein Structure Generation Method Using Machine Learning

    ProteinZen: An All-Atom Protein Structure Generation Method Using Machine Learning

    December 18, 2024

    Generating all-atom protein structures is a significant challenge in de novo protein design. Current generative models have improved significantly for backbone generation but remain difficult to solve for atomic precision because discrete amino acid identities are embedded within continuous placements of the atoms in 3D space. This issue is especially significant in designing functional proteins, including enzymes and molecular binders, as even minor inaccuracies at the atomic scale may impede practical application. Adopting a novel strategy that can effectively tackle these two facets while preserving both precision and computational efficiency is essential to surmount this challenge.

    Current models such as RFDiffusion and Chroma concentrate mainly on backbone configurations and offer restricted atomic resolution. Extensions such as RFDiffusion-AA and LigandMPNN attempt to capture atomic-level complexities but are not able to represent all-atom configurations exhaustively. Superposition-based methods like Protpardelle and Pallatom attempt to approach atomic structures but suffer from high computational costs and challenges in handling discrete-continuous interactions. Moreover, these approaches struggle with achieving the trade-off between sequence-structure consistency and diversity, making them less useful for realistic applications in exact protein design.

    Researchers from UC Berkeley and UCSF introduce ProteinZen, a two-stage generative framework that combines flow matching for backbone frames with latent space modeling to achieve precise all-atom protein generation. In the initial phase, ProteinZen constructs protein backbone frames within the SE(3) space while concurrently generating latent representations for each residue through flow-matching methodologies. This underlying abstraction, therefore avoids direct entanglement between atomic positioning and amino acid identities, making the generation process more streamlined. In this subsequent phase, a VAE that is hybrid with MLM interprets the latent representations into atomic-level structures, predicting sidechain torsion angles, as well as sequence identities. The incorporation of passthrough losses improves the alignment of the generated structures with the actual atomic properties, ensuring increased accuracy and consistency. This new framework addresses the limitations of existing approaches by achieving atomic-level accuracy without sacrificing diversity and computational efficiency.

    ProteinZen employs SE(3) flow matching for backbone frame generation and Euclidean flow matching for latent features, minimizing losses for rotation, translation, and latent representation prediction. A hybrid VAE-MLM autoencoder encodes atomic details into latent variables and decodes them into a sequence and atomic configurations. The model’s architecture incorporates Tensor-Field Networks (TFN) for encoding and modified IPMP layers for decoding, ensuring SE(3) equivariance and computational efficiency. Training is done on the AFDB512 dataset, which is very carefully built by combining PDB-Clustered monomers along with representatives from the AlphaFold Database that contains proteins with up to 512 residues. The training of this model makes use of a mix of real and synthetic data to improve generalization.

    ProteinZen achieves a sequence-structure consistency (SSC) of 46%, outperforming existing models while maintaining high structural and sequence diversity. It balances accuracy with novelty well, producing protein structures that are diverse yet unique with competitive precision. Performance analysis indicates that ProteinZen works well on smaller protein sequences while showing promise to be further developed for long-range modeling. The synthesized samples range from a variety of secondary structures, with a weak propensity toward alpha-helices. The structural evaluation confirms that most of the proteins generated are aligned with the known fold spaces while showing generalization towards novel folds. The results show that ProteinZen can produce highly accurate and diverse all-atom protein structures, thus marking a significant advance compared to existing generative approaches. 

    In conclusion, ProteinZen introduces an innovative methodology for the generation of all-atom proteins by integrating SE(3) flow matching for backbone synthesis alongside latent flow matching for the reconstruction of atomic structures. Through the separation of distinct amino acid identities and the continuous positioning of atoms, the technique attains precision at the atomic level, all the while preserving diversity and computational efficiency. With a sequence-structure consistency of 46% and evidenced structural uniqueness, ProteinZen establishes a novel standard for generative protein modeling. Future work will include the improvement of long-range structural modeling, refinement of the interaction between the latent space and decoder, and the exploration of conditional protein design tasks. This development signifies a significant progression toward the precise, effective, and practical design of all-atom proteins.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

    The post ProteinZen: An All-Atom Protein Structure Generation Method Using Machine Learning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUsing natural language in Amazon Q Business: From searching and creating ServiceNow incidents and knowledge articles to generating insights
    Next Article EnzymeCAGE: A Deep Learning Framework Designed to Predict Enzyme-Reaction Catalytic Specificity by Encoding both Pocket-Specific Enzyme Structures and Chemical Reactions

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-4732 – TOTOLINK A3002R/A3002RU HTTP POST Request Handler Buffer Overflow

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Ubuntu 25.10 “Questing Quokka”: Apertura dello sviluppo e anticipazioni

    Linux

    Perform a side-by-side upgrade in AWS DMS by moving tasks to minimize business impact

    Databases

    South Korean ERP Vendor’s Server Hacked to Spread Xctdoor Malware

    Development

    How Pattern PXM’s Content Brief is driving conversion on ecommerce marketplaces using AI

    Machine Learning

    Highlights

    Best Generative AI Courses

    July 28, 2024

    Learning to use generative AI tools like ChatGPT and Midjourney is no longer just a…

    Stacklock Releases Promptwright: A Python Library for Synthetic Dataset Generation Using an LLM (Local or Hosted)

    December 2, 2024

    SkyCell secures $116M for medical supply chain management

    June 25, 2024

    The Rise of “Dopamine Banking”: How Fintechs and Neobanks Are Redefining the Customer Experience

    January 23, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.