Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»A new way to create realistic 3D shapes using generative AI

    A new way to create realistic 3D shapes using generative AI

    December 7, 2024

    Creating realistic 3D models for applications like virtual reality, filmmaking, and engineering design can be a cumbersome process requiring lots of manual trial and error.

    While generative artificial intelligence models for images can streamline artistic processes by enabling creators to produce lifelike 2D images from text prompts, these models are not designed to generate 3D shapes. To bridge the gap, a recently developed technique called Score Distillation leverages 2D image generation models to create 3D shapes, but its output often ends up blurry or cartoonish.

    MIT researchers explored the relationships and differences between the algorithms used to generate 2D images and 3D shapes, identifying the root cause of lower-quality 3D models. From there, they crafted a simple fix to Score Distillation, which enables the generation of sharp, high-quality 3D shapes that are closer in quality to the best model-generated 2D images.
     

    A rotating robotic bee in color; as a 3D model; and silhouette.Rotating strawberry

    Some other methods try to fix this problem by retraining or fine-tuning the generative AI model, which can be expensive and time-consuming.

    By contrast, the MIT researchers’ technique achieves 3D shape quality on par with or better than these approaches without additional training or complex postprocessing.

    Moreover, by identifying the cause of the problem, the researchers have improved mathematical understanding of Score Distillation and related techniques, enabling future work to further improve performance.

    “Now we know where we should be heading, which allows us to find more efficient solutions that are faster and higher-quality,” says Artem Lukoianov, an electrical engineering and computer science (EECS) graduate student who is lead author of a paper on this technique. “In the long run, our work can help facilitate the process to be a co-pilot for designers, making it easier to create more realistic 3D shapes.”

    Lukoianov’s co-authors are Haitz Sáez de Ocáriz Borde, a graduate student at Oxford University; Kristjan Greenewald, a research scientist in the MIT-IBM Watson AI Lab; Vitor Campagnolo Guizilini, a scientist at the Toyota Research Institute; Timur Bagautdinov, a research scientist at Meta; and senior authors Vincent Sitzmann, an assistant professor of EECS at MIT who leads the Scene Representation Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and Justin Solomon, an associate professor of EECS and leader of the CSAIL Geometric Data Processing Group. The research will be presented at the Conference on Neural Information Processing Systems.

    From 2D images to 3D shapes

    Diffusion models, such as DALL-E, are a type of generative AI model that can produce lifelike images from random noise. To train these models, researchers add noise to images and then teach the model to reverse the process and remove the noise. The models use this learned “denoising” process to create images based on a user’s text prompts.

    But diffusion models underperform at directly generating realistic 3D shapes because there are not enough 3D data to train them. To get around this problem, researchers developed a technique called Score Distillation Sampling (SDS) in 2022 that uses a pretrained diffusion model to combine 2D images into a 3D representation.

    The technique involves starting with a random 3D representation, rendering a 2D view of a desired object from a random camera angle, adding noise to that image, denoising it with a diffusion model, then optimizing the random 3D representation so it matches the denoised image. These steps are repeated until the desired 3D object is generated.

    However, 3D shapes produced this way tend to look blurry or oversaturated.

    “This has been a bottleneck for a while. We know the underlying model is capable of doing better, but people didn’t know why this is happening with 3D shapes,” Lukoianov says.

    The MIT researchers explored the steps of SDS and identified a mismatch between a formula that forms a key part of the process and its counterpart in 2D diffusion models. The formula tells the model how to update the random representation by adding and removing noise, one step at a time, to make it look more like the desired image.

    Since part of this formula involves an equation that is too complex to be solved efficiently, SDS replaces it with randomly sampled noise at each step. The MIT researchers found that this noise leads to blurry or cartoonish 3D shapes.

    An approximate answer

    Instead of trying to solve this cumbersome formula precisely, the researchers tested approximation techniques until they identified the best one. Rather than randomly sampling the noise term, their approximation technique infers the missing term from the current 3D shape rendering.

    “By doing this, as the analysis in the paper predicts, it generates 3D shapes that look sharp and realistic,” he says.

    In addition, the researchers increased the resolution of the image rendering and adjusted some model parameters to further boost 3D shape quality.

    In the end, they were able to use an off-the-shelf, pretrained image diffusion model to create smooth, realistic-looking 3D shapes without the need for costly retraining. The 3D objects are similarly sharp to those produced using other methods that rely on ad hoc solutions.

    “Trying to blindly experiment with different parameters, sometimes it works and sometimes it doesn’t, but you don’t know why. We know this is the equation we need to solve. Now, this allows us to think of more efficient ways to solve it,” he says.

    Because their method relies on a pretrained diffusion model, it inherits the biases and shortcomings of that model, making it prone to hallucinations and other failures. Improving the underlying diffusion model would enhance their process.

    In addition to studying the formula to see how they could solve it more effectively, the researchers are interested in exploring how these insights could improve image editing techniques.

    Artem Lukoianov’s work is funded by the Toyota–CSAIL Joint Research Center. Vincent Sitzmann’s research is supported by the U.S. National Science Foundation, Singapore Defense Science and Technology Agency, Department of Interior/Interior Business Center, and IBM. Justin Solomon’s research is funded, in part, by the U.S. Army Research Office, National Science Foundation, the CSAIL Future of Data program, MIT–IBM Watson AI Lab, Wistron Corporation, and the Toyota–CSAIL Joint Research Center.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleGenie 2: A large-scale foundation world model
    Next Article Last Week in AI #297 – QwQ-32B-Preview, DeepSeek-R1-Lite-Preview, OLMo 2, Luma Photon

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    TeamViewer Attributes Corporate Network Breach to APT29 aka Midnight Blizzard

    Development

    How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod

    Machine Learning

    Billions of Apple Devices at Risk from “AirBorne” AirPlay Vulnerabilities

    Security

    The Little Triangle in the Tooltip

    Development

    Highlights

    New to the web platform in February

    March 28, 2025

    Discover some of the interesting features that have landed in stable and beta web browsers…

    Drone commander

    March 16, 2025

    Dopo 2 anni, la FSF si pronuncia a proposito della scelta di Red Hat di non rendere più pubblici i sorgenti

    February 25, 2025

    Amazon announces its own series of foundation models, Amazon Nova

    December 7, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.